logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , :
1theorem  ⊢  
 proveit.logic.booleans.disjunction.or_if_only_right
2instantiation4, 24, 5, 6  ⊢  
  : , :
3theorem  ⊢  
 proveit.numbers.numerals.decimals.less_7_8
4theorem  ⊢  
 proveit.numbers.ordering.not_less_from_less_eq
5instantiation29, 25, 7  ⊢  
  : , : , :
6instantiation8, 24, 9, 10, 11*, 12*  ⊢  
  : , : , :
7instantiation29, 27, 13  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
9theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
10instantiation14, 31  ⊢  
  :
11instantiation15, 16, 17  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.numbers.numerals.decimals.add_4_4
13instantiation29, 30, 18  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_lower_bound
15theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
16instantiation19, 21  ⊢  
  :
17instantiation20, 21, 22  ⊢  
  : , :
18theorem  ⊢  
 proveit.numbers.numerals.decimals.nat8
19theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
20theorem  ⊢  
 proveit.numbers.addition.commutation
21instantiation29, 23, 24  ⊢  
  : , : , :
22theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
23theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
24instantiation29, 25, 26  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
26instantiation29, 27, 28  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
28instantiation29, 30, 31  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
30theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
31theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
*equality replacement requirements