logo

Expression of type ExprTuple

from the theory of proveit.numbers.negation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, a, b
from proveit.logic import And, Equals, InSet
from proveit.numbers import Natural, Neg
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([a, b], Conditional(Equals(a, b), And(InSet(a, Natural), InSet(b, Natural), [Equals(Neg(a), Neg(b))]))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a, b\right) \mapsto \left\{a = b \textrm{ if } a \in \mathbb{N} ,  b \in \mathbb{N} ,  \left(\left(-a\right) = \left(-b\right)\right)\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 5
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 16
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple23, 24
6Literal
7ExprTuple8, 9, 10
8Operationoperator: 12
operands: 11
9Operationoperator: 12
operands: 13
10ExprTuple14
11ExprTuple23, 15
12Literal
13ExprTuple24, 15
14Operationoperator: 16
operands: 17
15Literal
16Literal
17ExprTuple18, 19
18Operationoperator: 21
operand: 23
19Operationoperator: 21
operand: 24
20ExprTuple23
21Literal
22ExprTuple24
23Variable
24Variable