logo

Expression of type Lambda

from the theory of proveit.numbers.negation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, b
from proveit.logic import And, Equals, InSet
from proveit.numbers import Natural, Neg
In [2]:
# build up the expression from sub-expressions
expr = Lambda([a, b], Conditional(Equals(a, b), And(InSet(a, Natural), InSet(b, Natural), [Equals(Neg(a), Neg(b))])))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a, b\right) \mapsto \left\{a = b \textrm{ if } a \in \mathbb{N} ,  b \in \mathbb{N} ,  \left(\left(-a\right) = \left(-b\right)\right)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 4
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 15
operands: 4
3Operationoperator: 5
operands: 6
4ExprTuple22, 23
5Literal
6ExprTuple7, 8, 9
7Operationoperator: 11
operands: 10
8Operationoperator: 11
operands: 12
9ExprTuple13
10ExprTuple22, 14
11Literal
12ExprTuple23, 14
13Operationoperator: 15
operands: 16
14Literal
15Literal
16ExprTuple17, 18
17Operationoperator: 20
operand: 22
18Operationoperator: 20
operand: 23
19ExprTuple22
20Literal
21ExprTuple23
22Variable
23Variable