logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, x, y
from proveit.logic import And, Equals, InSet
from proveit.numbers import Complex, Mult, Neg
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([x, y], Conditional(Equals(Neg(Mult(Neg(x), y)), Mult(x, y)), And(InSet(x, Complex), InSet(y, Complex)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(x, y\right) \mapsto \left\{\left(-\left(\left(-x\right) \cdot y\right)\right) = \left(x \cdot y\right) \textrm{ if } x \in \mathbb{C} ,  y \in \mathbb{C}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 14
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple11, 12
9Operationoperator: 24
operand: 18
10Operationoperator: 20
operands: 14
11Operationoperator: 16
operands: 15
12Operationoperator: 16
operands: 17
13ExprTuple18
14ExprTuple26, 23
15ExprTuple26, 19
16Literal
17ExprTuple23, 19
18Operationoperator: 20
operands: 21
19Literal
20Literal
21ExprTuple22, 23
22Operationoperator: 24
operand: 26
23Variable
24Literal
25ExprTuple26
26Variable