logo

Expression of type Lambda

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, x, y
from proveit.logic import And, Equals, InSet
from proveit.numbers import Complex, Mult, Neg
In [2]:
# build up the expression from sub-expressions
expr = Lambda([x, y], Conditional(Equals(Neg(Mult(Neg(x), y)), Mult(x, y)), And(InSet(x, Complex), InSet(y, Complex))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x, y\right) \mapsto \left\{\left(-\left(\left(-x\right) \cdot y\right)\right) = \left(x \cdot y\right) \textrm{ if } x \in \mathbb{C} ,  y \in \mathbb{C}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 13
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple10, 11
8Operationoperator: 23
operand: 17
9Operationoperator: 19
operands: 13
10Operationoperator: 15
operands: 14
11Operationoperator: 15
operands: 16
12ExprTuple17
13ExprTuple25, 22
14ExprTuple25, 18
15Literal
16ExprTuple22, 18
17Operationoperator: 19
operands: 20
18Literal
19Literal
20ExprTuple21, 22
21Operationoperator: 23
operand: 25
22Variable
23Literal
24ExprTuple25
25Variable