logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, k
from proveit.numbers import Add, Interval, Sum, frac
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Add(a, b), Sum(index_or_indices = [k], summand = k, domain = Interval(a, b)), frac(a, b))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a + b, \sum_{k = a}^{b} k, \frac{a}{b}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3
1Operationoperator: 4
operands: 17
2Operationoperator: 5
operand: 8
3Operationoperator: 7
operands: 17
4Literal
5Literal
6ExprTuple8
7Literal
8Lambdaparameter: 14
body: 10
9ExprTuple14
10Conditionalvalue: 14
condition: 11
11Operationoperator: 12
operands: 13
12Literal
13ExprTuple14, 15
14Variable
15Operationoperator: 16
operands: 17
16Literal
17ExprTuple18, 19
18Variable
19Variable