logo

Expression of type Lambda

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, b, k
from proveit.logic import InSet
from proveit.numbers import Interval
In [2]:
# build up the expression from sub-expressions
expr = Lambda(k, Conditional(k, InSet(k, Interval(a, b))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
k \mapsto \left\{k \textrm{ if } k \in \{a~\ldotp \ldotp~b\}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 6
body: 2
1ExprTuple6
2Conditionalvalue: 6
condition: 3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Variable
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 11
10Variable
11Variable