logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, c, d
from proveit.numbers import Exp, Neg, four, frac, one, three, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(frac(four, three), Exp(d, two), b, a, c, Exp(b, Neg(frac(one, two))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{4}{3}, d^{2}, b, a, c, b^{-\frac{1}{2}}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 13, 3, 4, 5
1Operationoperator: 18
operands: 6
2Operationoperator: 8
operands: 7
3Variable
4Variable
5Operationoperator: 8
operands: 9
6ExprTuple10, 11
7ExprTuple12, 21
8Literal
9ExprTuple13, 14
10Literal
11Literal
12Variable
13Variable
14Operationoperator: 15
operand: 17
15Literal
16ExprTuple17
17Operationoperator: 18
operands: 19
18Literal
19ExprTuple20, 21
20Literal
21Literal