logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, delta, k, theta
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Mult(two, pi, i, delta)
sub_expr2 = Mult(two, pi, i, theta)
expr = ExprTuple(Exp(Mult(Exp(e, sub_expr1), Exp(e, sub_expr2)), k), Exp(e, Mult(Add(sub_expr1, sub_expr2), k)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \delta} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta}\right)^{k}, \mathsf{e}^{\left(\left(2 \cdot \pi \cdot \mathsf{i} \cdot \delta\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot \theta\right)\right) \cdot k}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 14
operands: 3
2Operationoperator: 14
operands: 4
3ExprTuple5, 12
4ExprTuple18, 6
5Operationoperator: 22
operands: 7
6Operationoperator: 22
operands: 8
7ExprTuple9, 10
8ExprTuple11, 12
9Operationoperator: 14
operands: 13
10Operationoperator: 14
operands: 15
11Operationoperator: 16
operands: 17
12Variable
13ExprTuple18, 19
14Literal
15ExprTuple18, 20
16Literal
17ExprTuple19, 20
18Literal
19Operationoperator: 22
operands: 21
20Operationoperator: 22
operands: 23
21ExprTuple25, 26, 27, 24
22Literal
23ExprTuple25, 26, 27, 28
24Variable
25Literal
26Literal
27Literal
28Variable