| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | , , , ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
2 | instantiation | 10, 69, 32, 5, 12, 6, 7, 60 | , , , ⊢ |
| : , : , : , : , : , : |
3 | instantiation | 8, 9, 33, 18, 45, 64, 46, 19 | , , , ⊢ |
| : , : , : |
4 | instantiation | 10, 51, 52, 69, 53, 11, 12, 13, 60, 14* | , , , ⊢ |
| : , : , : , : , : , : |
5 | instantiation | 37 | ⊢ |
| : , : , : |
6 | instantiation | 15, 18, 42 | , ⊢ |
| : , : |
7 | instantiation | 15, 18, 43 | , ⊢ |
| : , : |
8 | theorem | | ⊢ |
| proveit.numbers.exponentiation.products_of_real_powers |
9 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
10 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
11 | instantiation | 57 | ⊢ |
| : , : |
12 | instantiation | 15, 18, 60 | , ⊢ |
| : , : |
13 | instantiation | 15, 18, 16 | , , , ⊢ |
| : , : |
14 | instantiation | 17, 18, 64, 21, 19, 20* | , , , ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
16 | instantiation | 67, 63, 21 | , , ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_real_powers |
18 | instantiation | 67, 63, 22 | ⊢ |
| : , : , : |
19 | instantiation | 23, 24 | ⊢ |
| : |
20 | instantiation | 34, 25, 26 | , , ⊢ |
| : , : , : |
21 | instantiation | 27, 32, 33, 45, 64, 46 | , , ⊢ |
| : , : |
22 | instantiation | 67, 28, 30 | ⊢ |
| : , : , : |
23 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
24 | instantiation | 67, 29, 30 | ⊢ |
| : , : , : |
25 | instantiation | 31, 69, 32, 51, 33, 53, 60, 42, 43 | , , ⊢ |
| : , : , : , : , : , : |
26 | instantiation | 34, 35, 36 | , , ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure |
28 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
29 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonzero |
30 | assumption | | ⊢ |
31 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
33 | instantiation | 37 | ⊢ |
| : , : , : |
34 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
35 | instantiation | 38, 69, 60, 42, 43 | , , ⊢ |
| : , : , : , : , : , : , : |
36 | instantiation | 39, 51, 52, 53, 40, 41, 60, 42, 43, 44* | , , ⊢ |
| : , : , : , : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
38 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
39 | theorem | | ⊢ |
| proveit.numbers.addition.association |
40 | instantiation | 57 | ⊢ |
| : , : |
41 | instantiation | 57 | ⊢ |
| : , : |
42 | instantiation | 67, 63, 45 | ⊢ |
| : , : , : |
43 | instantiation | 67, 63, 46 | ⊢ |
| : , : , : |
44 | instantiation | 47, 48, 49* | ⊢ |
| : , : |
45 | assumption | | ⊢ |
46 | assumption | | ⊢ |
47 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
48 | instantiation | 50, 51, 52, 69, 53, 54, 55, 60, 56* | ⊢ |
| : , : , : , : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
50 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
51 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
53 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
54 | instantiation | 57 | ⊢ |
| : , : |
55 | instantiation | 67, 63, 58 | ⊢ |
| : , : , : |
56 | instantiation | 59, 60 | ⊢ |
| : |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
58 | instantiation | 67, 61, 62 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
60 | instantiation | 67, 63, 64 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
62 | instantiation | 67, 65, 66 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
64 | assumption | | ⊢ |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
66 | instantiation | 67, 68, 69 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |