| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 2 | reference | 47 | ⊢  |
| 3 | reference | 48 | ⊢  |
| 4 | reference | 65 | ⊢  |
| 5 | reference | 49 | ⊢  |
| 6 | instantiation | 53 | ⊢  |
| | : , :  |
| 7 | instantiation | 11, 14, 56 | , ⊢  |
| | : , :  |
| 8 | instantiation | 11, 14, 12 | , , , ⊢  |
| | : , :  |
| 9 | reference | 56 | ⊢  |
| 10 | instantiation | 13, 14, 60, 17, 15, 16* | , , , ⊢  |
| | : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 12 | instantiation | 63, 59, 17 | , , ⊢  |
| | : , : , :  |
| 13 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_real_powers |
| 14 | instantiation | 63, 59, 18 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 19, 20 | ⊢  |
| | :  |
| 16 | instantiation | 30, 21, 22 | , , ⊢  |
| | : , : , :  |
| 17 | instantiation | 23, 28, 29, 41, 60, 42 | , , ⊢  |
| | : , :  |
| 18 | instantiation | 63, 24, 26 | ⊢  |
| | : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
| 20 | instantiation | 63, 25, 26 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 27, 65, 28, 47, 29, 49, 56, 38, 39 | , , ⊢  |
| | : , : , : , : , : , :  |
| 22 | instantiation | 30, 31, 32 | , , ⊢  |
| | : , : , :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure |
| 24 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 25 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonzero |
| 26 | assumption | | ⊢  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.addition.disassociation |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 29 | instantiation | 33 | ⊢  |
| | : , : , :  |
| 30 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 31 | instantiation | 34, 65, 56, 38, 39 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 32 | instantiation | 35, 47, 48, 49, 36, 37, 56, 38, 39, 40* | , , ⊢  |
| | : , : , : , : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 34 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 35 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 36 | instantiation | 53 | ⊢  |
| | : , :  |
| 37 | instantiation | 53 | ⊢  |
| | : , :  |
| 38 | instantiation | 63, 59, 41 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 63, 59, 42 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 43, 44, 45* | ⊢  |
| | : , :  |
| 41 | assumption | | ⊢  |
| 42 | assumption | | ⊢  |
| 43 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 44 | instantiation | 46, 47, 48, 65, 49, 50, 51, 56, 52* | ⊢  |
| | : , : , : , : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 46 | theorem | | ⊢  |
| | proveit.numbers.multiplication.distribute_through_sum |
| 47 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 48 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 49 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 50 | instantiation | 53 | ⊢  |
| | : , :  |
| 51 | instantiation | 63, 59, 54 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 55, 56 | ⊢  |
| | :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 54 | instantiation | 63, 57, 58 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 56 | instantiation | 63, 59, 60 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 58 | instantiation | 63, 61, 62 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 60 | assumption | | ⊢  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 62 | instantiation | 63, 64, 65 | ⊢  |
| | : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 64 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 65 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |