logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, b, delta, k, theta
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Mult(two, pi, i, b)
sub_expr2 = Mult(Add(Mult(two, pi, i, delta), Mult(two, pi, i, theta)), k)
expr = ExprTuple(Mult(Exp(e, sub_expr2), Exp(e, sub_expr1)), Exp(e, Add(sub_expr2, sub_expr1)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}^{\left(\left(2 \cdot \pi \cdot \mathsf{i} \cdot \delta\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot \theta\right)\right) \cdot k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}, \mathsf{e}^{\left(\left(\left(2 \cdot \pi \cdot \mathsf{i} \cdot \delta\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot \theta\right)\right) \cdot k\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot b\right)}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 25
operands: 3
2Operationoperator: 9
operands: 4
3ExprTuple5, 6
4ExprTuple12, 7
5Operationoperator: 9
operands: 8
6Operationoperator: 9
operands: 10
7Operationoperator: 20
operands: 11
8ExprTuple12, 13
9Literal
10ExprTuple12, 14
11ExprTuple13, 14
12Literal
13Operationoperator: 25
operands: 15
14Operationoperator: 25
operands: 16
15ExprTuple17, 18
16ExprTuple28, 29, 30, 19
17Operationoperator: 20
operands: 21
18Variable
19Variable
20Literal
21ExprTuple22, 23
22Operationoperator: 25
operands: 24
23Operationoperator: 25
operands: 26
24ExprTuple28, 29, 30, 27
25Literal
26ExprTuple28, 29, 30, 31
27Variable
28Literal
29Literal
30Literal
31Variable