logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, k, theta
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Exp(a, k)
sub_expr2 = Exp(e, Mult(two, pi, i, theta, k))
sub_expr3 = Exp(Add(a, b), k)
sub_expr4 = Exp(e, Mult(two, pi, i, b))
expr = ExprTuple(Mult(sub_expr1, sub_expr2, sub_expr3, sub_expr4), Mult(sub_expr1, Mult(sub_expr2, sub_expr3), sub_expr4))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta \cdot k} \cdot \left(a + b\right)^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}, a^{k} \cdot \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta \cdot k} \cdot \left(a + b\right)^{k}\right) \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 21
operands: 3
2Operationoperator: 21
operands: 4
3ExprTuple5, 11, 12, 7
4ExprTuple5, 6, 7
5Operationoperator: 15
operands: 8
6Operationoperator: 21
operands: 9
7Operationoperator: 15
operands: 10
8ExprTuple30, 29
9ExprTuple11, 12
10ExprTuple18, 13
11Operationoperator: 15
operands: 14
12Operationoperator: 15
operands: 16
13Operationoperator: 21
operands: 17
14ExprTuple18, 19
15Literal
16ExprTuple20, 29
17ExprTuple25, 26, 27, 31
18Literal
19Operationoperator: 21
operands: 22
20Operationoperator: 23
operands: 24
21Literal
22ExprTuple25, 26, 27, 28, 29
23Literal
24ExprTuple30, 31
25Literal
26Literal
27Literal
28Variable
29Variable
30Variable
31Variable