| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 10 | ⊢ |
2 | instantiation | 4, 5, 6, 7 | ⊢ |
| : , : , : , : |
3 | instantiation | 10, 8, 9 | ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
5 | instantiation | 10, 11, 12 | ⊢ |
| : , : , : |
6 | instantiation | 16, 20, 70, 79, 22, 13, 14, 46, 28, 29, 48, 30, 31, 15* | ⊢ |
| : , : , : , : , : , : |
7 | instantiation | 16, 83, 70, 17, 18, 23, 29, 48, 30, 31, 19* | ⊢ |
| : , : , : , : , : , : |
8 | instantiation | 26, 20, 70, 83, 22, 21, 23, 24, 30, 31 | ⊢ |
| : , : , : , : , : , : , : |
9 | instantiation | 26, 83, 70, 20, 21, 22, 30, 23, 24, 31 | ⊢ |
| : , : , : , : , : , : , : |
10 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
11 | instantiation | 26, 83, 80, 25, 46, 29, 28, 30, 48, 31 | ⊢ |
| : , : , : , : , : , : , : |
12 | instantiation | 26, 80, 83, 27, 46, 28, 29, 30, 48, 31 | ⊢ |
| : , : , : , : , : , : , : |
13 | instantiation | 37 | ⊢ |
| : , : |
14 | instantiation | 32 | ⊢ |
| : , : , : , : |
15 | instantiation | 34, 46, 35, 67, 33* | ⊢ |
| : , : , : |
16 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
17 | instantiation | 37 | ⊢ |
| : , : |
18 | instantiation | 37 | ⊢ |
| : , : |
19 | instantiation | 34, 48, 67, 35, 36* | ⊢ |
| : , : , : |
20 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
21 | instantiation | 37 | ⊢ |
| : , : |
22 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
23 | instantiation | 41, 46, 38 | ⊢ |
| : , : |
24 | instantiation | 41, 48, 39 | ⊢ |
| : , : |
25 | instantiation | 40 | ⊢ |
| : , : , : |
26 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
27 | instantiation | 40 | ⊢ |
| : , : , : |
28 | instantiation | 41, 46, 50 | ⊢ |
| : , : |
29 | instantiation | 41, 48, 50 | ⊢ |
| : , : |
30 | instantiation | 81, 59, 42 | ⊢ |
| : , : , : |
31 | instantiation | 43, 51, 44, 45 | ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
33 | instantiation | 47, 46 | ⊢ |
| : |
34 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
36 | instantiation | 47, 48 | ⊢ |
| : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
38 | instantiation | 49, 51, 50 | ⊢ |
| : , : |
39 | instantiation | 49, 50, 51 | ⊢ |
| : , : |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
41 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
42 | instantiation | 81, 68, 52 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
44 | instantiation | 81, 59, 53 | ⊢ |
| : , : , : |
45 | instantiation | 54, 55 | ⊢ |
| : |
46 | instantiation | 81, 59, 56 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
48 | instantiation | 81, 59, 57 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
50 | instantiation | 81, 59, 58 | ⊢ |
| : , : , : |
51 | instantiation | 81, 59, 60 | ⊢ |
| : , : , : |
52 | instantiation | 81, 76, 61 | ⊢ |
| : , : , : |
53 | instantiation | 81, 68, 62 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
56 | instantiation | 81, 68, 63 | ⊢ |
| : , : , : |
57 | instantiation | 81, 68, 64 | ⊢ |
| : , : , : |
58 | instantiation | 65, 66, 67 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
60 | instantiation | 81, 68, 69 | ⊢ |
| : , : , : |
61 | instantiation | 81, 82, 70 | ⊢ |
| : , : , : |
62 | instantiation | 81, 76, 71 | ⊢ |
| : , : , : |
63 | instantiation | 81, 76, 72 | ⊢ |
| : , : , : |
64 | instantiation | 81, 76, 73 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
66 | instantiation | 74, 75 | ⊢ |
| : , : |
67 | assumption | | ⊢ |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
69 | instantiation | 81, 76, 77 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
71 | instantiation | 81, 82, 78 | ⊢ |
| : , : , : |
72 | instantiation | 81, 82, 79 | ⊢ |
| : , : , : |
73 | instantiation | 81, 82, 80 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
77 | instantiation | 81, 82, 83 | ⊢ |
| : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
79 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
81 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |