| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 10 | ⊢  |
| 2 | instantiation | 4, 5, 6, 7 | ⊢  |
| | : , : , : , :  |
| 3 | instantiation | 10, 8, 9 | ⊢  |
| | : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 5 | instantiation | 10, 11, 12 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 16, 20, 70, 79, 22, 13, 14, 46, 28, 29, 48, 30, 31, 15* | ⊢  |
| | : , : , : , : , : , :  |
| 7 | instantiation | 16, 83, 70, 17, 18, 23, 29, 48, 30, 31, 19* | ⊢  |
| | : , : , : , : , : , :  |
| 8 | instantiation | 26, 20, 70, 83, 22, 21, 23, 24, 30, 31 | ⊢  |
| | : , : , : , : , : , : , :  |
| 9 | instantiation | 26, 83, 70, 20, 21, 22, 30, 23, 24, 31 | ⊢  |
| | : , : , : , : , : , : , :  |
| 10 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 11 | instantiation | 26, 83, 80, 25, 46, 29, 28, 30, 48, 31 | ⊢  |
| | : , : , : , : , : , : , :  |
| 12 | instantiation | 26, 80, 83, 27, 46, 28, 29, 30, 48, 31 | ⊢  |
| | : , : , : , : , : , : , :  |
| 13 | instantiation | 37 | ⊢  |
| | : , :  |
| 14 | instantiation | 32 | ⊢  |
| | : , : , : , :  |
| 15 | instantiation | 34, 46, 35, 67, 33* | ⊢  |
| | : , : , :  |
| 16 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 17 | instantiation | 37 | ⊢  |
| | : , :  |
| 18 | instantiation | 37 | ⊢  |
| | : , :  |
| 19 | instantiation | 34, 48, 67, 35, 36* | ⊢  |
| | : , : , :  |
| 20 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 21 | instantiation | 37 | ⊢  |
| | : , :  |
| 22 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 23 | instantiation | 41, 46, 38 | ⊢  |
| | : , :  |
| 24 | instantiation | 41, 48, 39 | ⊢  |
| | : , :  |
| 25 | instantiation | 40 | ⊢  |
| | : , : , :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 27 | instantiation | 40 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 41, 46, 50 | ⊢  |
| | : , :  |
| 29 | instantiation | 41, 48, 50 | ⊢  |
| | : , :  |
| 30 | instantiation | 81, 59, 42 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 43, 51, 44, 45 | ⊢  |
| | : , :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 33 | instantiation | 47, 46 | ⊢  |
| | :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_posnat_powers |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 36 | instantiation | 47, 48 | ⊢  |
| | :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 38 | instantiation | 49, 51, 50 | ⊢  |
| | : , :  |
| 39 | instantiation | 49, 50, 51 | ⊢  |
| | : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 41 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 42 | instantiation | 81, 68, 52 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 44 | instantiation | 81, 59, 53 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 54, 55 | ⊢  |
| | :  |
| 46 | instantiation | 81, 59, 56 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 48 | instantiation | 81, 59, 57 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.addition.add_complex_closure_bin |
| 50 | instantiation | 81, 59, 58 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 81, 59, 60 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 81, 76, 61 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 81, 68, 62 | ⊢  |
| | : , : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat5 |
| 56 | instantiation | 81, 68, 63 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 81, 68, 64 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 65, 66, 67 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 60 | instantiation | 81, 68, 69 | ⊢  |
| | : , : , :  |
| 61 | instantiation | 81, 82, 70 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 81, 76, 71 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 81, 76, 72 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 81, 76, 73 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 66 | instantiation | 74, 75 | ⊢  |
| | : , :  |
| 67 | assumption | | ⊢  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 69 | instantiation | 81, 76, 77 | ⊢  |
| | : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 71 | instantiation | 81, 82, 78 | ⊢  |
| | : , : , :  |
| 72 | instantiation | 81, 82, 79 | ⊢  |
| | : , : , :  |
| 73 | instantiation | 81, 82, 80 | ⊢  |
| | : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 75 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
| 76 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 77 | instantiation | 81, 82, 83 | ⊢  |
| | : , : , :  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 80 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 81 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |