logo

Expression of type Mult

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import n
from proveit.numbers import Exp, Mult, five, four, frac, one, three, two
In [2]:
# build up the expression from sub-expressions
expr = Mult(four, Exp(three, n), Exp(four, n), two, three, frac(one, five))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
4 \cdot 3^{n} \cdot 4^{n} \cdot 2 \cdot 3 \cdot \frac{1}{5}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple13, 3, 4, 5, 12, 6
3Operationoperator: 8
operands: 7
4Operationoperator: 8
operands: 9
5Literal
6Operationoperator: 10
operands: 11
7ExprTuple12, 14
8Literal
9ExprTuple13, 14
10Literal
11ExprTuple15, 16
12Literal
13Literal
14Variable
15Literal
16Literal