logo

Expression of type ExprTuple

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, n, x
from proveit.logic import Equals
from proveit.numbers import Exp, frac, greater_eq, one, zero
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(x, Conditional(Equals(Exp(Exp(x, n), frac(one, n)), x), greater_eq(x, zero))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x \mapsto \left\{\sqrt[\leftroot{-3}\uproot{3}n]{(x^{n})} = x \textrm{ if } x \geq 0\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 19
body: 3
2ExprTuple19
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operands: 7
5Operationoperator: 8
operands: 9
6Literal
7ExprTuple10, 19
8Literal
9ExprTuple11, 19
10Operationoperator: 15
operands: 12
11Literal
12ExprTuple13, 14
13Operationoperator: 15
operands: 16
14Operationoperator: 17
operands: 18
15Literal
16ExprTuple19, 21
17Literal
18ExprTuple20, 21
19Variable
20Literal
21Variable