logo

Expression of type Conditional

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, n, x
from proveit.logic import Equals
from proveit.numbers import Exp, frac, greater_eq, one, zero
In [2]:
# build up the expression from sub-expressions
expr = Conditional(Equals(Exp(Exp(x, n), frac(one, n)), x), greater_eq(x, zero))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\sqrt[\leftroot{-3}\uproot{3}n]{(x^{n})} = x \textrm{ if } x \geq 0\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7, 16
5Literal
6ExprTuple8, 16
7Operationoperator: 12
operands: 9
8Literal
9ExprTuple10, 11
10Operationoperator: 12
operands: 13
11Operationoperator: 14
operands: 15
12Literal
13ExprTuple16, 18
14Literal
15ExprTuple17, 18
16Variable
17Literal
18Variable