logo

Expression of type ExprTuple

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprRange, ExprTuple, Lambda, Variable, n, x
from proveit.logic import Equals, InSet
from proveit.numbers import Complex, Exp, Mult, one
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(x, Conditional(Equals(Mult(ExprRange(Variable("_a", latex_format = r"{_{-}a}"), x, one, n)), Exp(x, n)), InSet(x, Complex))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x \mapsto \left\{\left(x \cdot  x \cdot  ..\left(n - 3\right) \times.. \cdot  x\right) = x^{n} \textrm{ if } x \in \mathbb{C}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 22
body: 3
2ExprTuple22
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operands: 7
5Operationoperator: 8
operands: 9
6Literal
7ExprTuple10, 11
8Literal
9ExprTuple22, 12
10Operationoperator: 13
operands: 14
11Operationoperator: 15
operands: 16
12Literal
13Literal
14ExprTuple17
15Literal
16ExprTuple22, 20
17ExprRangelambda_map: 18
start_index: 19
end_index: 20
18Lambdaparameter: 23
body: 22
19Literal
20Variable
21ExprTuple23
22Variable
23Variable