logo

Expression of type Conditional

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprRange, Variable, n, x
from proveit.logic import Equals, InSet
from proveit.numbers import Complex, Exp, Mult, one
In [2]:
# build up the expression from sub-expressions
expr = Conditional(Equals(Mult(ExprRange(Variable("_a", latex_format = r"{_{-}a}"), x, one, n)), Exp(x, n)), InSet(x, Complex))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\left(x \cdot  x \cdot  ..\left(n - 3\right) \times.. \cdot  x\right) = x^{n} \textrm{ if } x \in \mathbb{C}\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7, 8
5Literal
6ExprTuple19, 9
7Operationoperator: 10
operands: 11
8Operationoperator: 12
operands: 13
9Literal
10Literal
11ExprTuple14
12Literal
13ExprTuple19, 17
14ExprRangelambda_map: 15
start_index: 16
end_index: 17
15Lambdaparameter: 20
body: 19
16Literal
17Variable
18ExprTuple20
19Variable
20Variable