logo

Expression of type ExprTuple

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprRange, ExprTuple, IndexedVar, Lambda, Variable, a, n
from proveit.core_expr_types import a_1_to_n
from proveit.logic import And, Equals, InSet
from proveit.numbers import Complex, Mult, one, sqrt
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = IndexedVar(a, sub_expr1)
expr = ExprTuple(Lambda([a_1_to_n], Conditional(Equals(sqrt(Mult(a_1_to_n)), Mult(ExprRange(sub_expr1, sqrt(sub_expr2), one, n))), And(ExprRange(sub_expr1, InSet(sub_expr2, Complex), one, n)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mapsto \left\{\sqrt{\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{n}\right)} = \left(\sqrt{\left(a_{1}\right)} \cdot  \sqrt{\left(a_{2}\right)} \cdot  \ldots \cdot  \sqrt{\left(a_{n}\right)}\right) \textrm{ if } \left(a_{1} \in \mathbb{C}\right) \land  \left(a_{2} \in \mathbb{C}\right) \land  \ldots \land  \left(a_{n} \in \mathbb{C}\right)\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 19
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple11
9Operationoperator: 28
operands: 12
10Operationoperator: 18
operands: 13
11ExprRangelambda_map: 14
start_index: 37
end_index: 27
12ExprTuple15, 31
13ExprTuple16
14Lambdaparameter: 36
body: 17
15Operationoperator: 18
operands: 19
16ExprRangelambda_map: 20
start_index: 37
end_index: 27
17Operationoperator: 21
operands: 22
18Literal
19ExprTuple23
20Lambdaparameter: 36
body: 24
21Literal
22ExprTuple30, 25
23ExprRangelambda_map: 26
start_index: 37
end_index: 27
24Operationoperator: 28
operands: 29
25Literal
26Lambdaparameter: 36
body: 30
27Variable
28Literal
29ExprTuple30, 31
30IndexedVarvariable: 32
index: 36
31Operationoperator: 34
operands: 35
32Variable
33ExprTuple36
34Literal
35ExprTuple37, 38
36Variable
37Literal
38Literal