logo

Expression of type Exp

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.core_expr_types import a_1_to_n
from proveit.numbers import Mult, sqrt
In [2]:
# build up the expression from sub-expressions
expr = sqrt(Mult(a_1_to_n))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\sqrt{\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{n}\right)}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
exponent'raised': exponent as a superscript; 'radical': using a radical signradicalradical('with_radical', 'without_radical')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9
7Literal
8ExprTuple12, 10
9ExprRangelambda_map: 11
start_index: 12
end_index: 13
10Literal
11Lambdaparameter: 17
body: 14
12Literal
13Variable
14IndexedVarvariable: 15
index: 17
15Variable
16ExprTuple17
17Variable