logo

Expression of type ExprTuple

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, x
from proveit.logic import And, Equals, InSet
from proveit.numbers import Mult, Real, greater_eq, sqrt, zero
In [2]:
# build up the expression from sub-expressions
sub_expr1 = sqrt(x)
expr = ExprTuple(Lambda(x, Conditional(Equals(Mult(sub_expr1, sub_expr1), x), And(InSet(x, Real), greater_eq(x, zero)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x \mapsto \left\{\left(\sqrt{x} \cdot \sqrt{x}\right) = x \textrm{ if } x \in \mathbb{R} ,  x \geq 0\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 24
body: 3
2ExprTuple24
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operands: 7
5Operationoperator: 8
operands: 9
6Literal
7ExprTuple10, 24
8Literal
9ExprTuple11, 12
10Operationoperator: 13
operands: 14
11Operationoperator: 15
operands: 16
12Operationoperator: 17
operands: 18
13Literal
14ExprTuple19, 19
15Literal
16ExprTuple24, 20
17Literal
18ExprTuple21, 24
19Operationoperator: 22
operands: 23
20Literal
21Literal
22Literal
23ExprTuple24, 25
24Variable
25Operationoperator: 26
operands: 27
26Literal
27ExprTuple28, 29
28Literal
29Literal