logo

Expression of type Lambda

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, x
from proveit.logic import And, Equals, InSet
from proveit.numbers import Mult, Real, greater_eq, sqrt, zero
In [2]:
# build up the expression from sub-expressions
sub_expr1 = sqrt(x)
expr = Lambda(x, Conditional(Equals(Mult(sub_expr1, sub_expr1), x), And(InSet(x, Real), greater_eq(x, zero))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
x \mapsto \left\{\left(\sqrt{x} \cdot \sqrt{x}\right) = x \textrm{ if } x \in \mathbb{R} ,  x \geq 0\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 23
body: 2
1ExprTuple23
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 23
7Literal
8ExprTuple10, 11
9Operationoperator: 12
operands: 13
10Operationoperator: 14
operands: 15
11Operationoperator: 16
operands: 17
12Literal
13ExprTuple18, 18
14Literal
15ExprTuple23, 19
16Literal
17ExprTuple20, 23
18Operationoperator: 21
operands: 22
19Literal
20Literal
21Literal
22ExprTuple23, 24
23Variable
24Operationoperator: 25
operands: 26
25Literal
26ExprTuple27, 28
27Literal
28Literal