logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, x, y
from proveit.core_expr_types import w_1_to_m, z_1_to_n
from proveit.numbers import Mult, frac
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(frac(x, Mult(w_1_to_m, y, z_1_to_n)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{x}{w_{1} \cdot  w_{2} \cdot  \ldots \cdot  w_{m} \cdot y\cdot z_{1} \cdot  z_{2} \cdot  \ldots \cdot  z_{n}}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 5
4Variable
5Operationoperator: 6
operands: 7
6Literal
7ExprTuple8, 9, 10
8ExprRangelambda_map: 11
start_index: 14
end_index: 12
9Variable
10ExprRangelambda_map: 13
start_index: 14
end_index: 15
11Lambdaparameter: 21
body: 16
12Variable
13Lambdaparameter: 21
body: 17
14Literal
15Variable
16IndexedVarvariable: 18
index: 21
17IndexedVarvariable: 19
index: 21
18Variable
19Variable
20ExprTuple21
21Variable