logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, x, y
from proveit.core_expr_types import w_1_to_m, z_1_to_n
from proveit.numbers import Mult
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(x, Mult(w_1_to_m, y, z_1_to_n))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x, w_{1} \cdot  w_{2} \cdot  \ldots \cdot  w_{m} \cdot y\cdot z_{1} \cdot  z_{2} \cdot  \ldots \cdot  z_{n}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Variable
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6, 7
5ExprRangelambda_map: 8
start_index: 11
end_index: 9
6Variable
7ExprRangelambda_map: 10
start_index: 11
end_index: 12
8Lambdaparameter: 18
body: 13
9Variable
10Lambdaparameter: 18
body: 14
11Literal
12Variable
13IndexedVarvariable: 15
index: 18
14IndexedVarvariable: 16
index: 18
15Variable
16Variable
17ExprTuple18
18Variable