logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, , , ,  ⊢  
  : , :
1theorem  ⊢  
 proveit.logic.equality.equals_reversal
2instantiation3, 34, 4, 5, 6*, , , ,  ⊢  
  : , : , :
3theorem  ⊢  
 proveit.numbers.division.frac_cancel_right
4assumption  ⊢  
5instantiation7, 23, 8, ,  ⊢  
  : , :
6instantiation9, 10, 11,  ⊢  
  : , : , :
7theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
8instantiation12, 13, 14,  ⊢  
  : , :
9axiom  ⊢  
 proveit.logic.equality.equals_transitivity
10instantiation15, 20, 19, 18, 22, 16, 23, 31,  ⊢  
  : , : , : , : , : , :
11instantiation17, 18, 19, 20, 21, 22, 23, 31, 24*,  ⊢  
  : , : , : , : , : , :
12theorem  ⊢  
 proveit.numbers.addition.add_complex_closure_bin
13assumption  ⊢  
14assumption  ⊢  
15theorem  ⊢  
 proveit.numbers.multiplication.disassociation
16instantiation25  ⊢  
  : , :
17theorem  ⊢  
 proveit.numbers.multiplication.association
18theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
19theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
20axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
21instantiation25  ⊢  
  : , :
22theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
23assumption  ⊢  
24instantiation26, 31, 27, 28*, 29*  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
26theorem  ⊢  
 proveit.numbers.exponentiation.product_of_posnat_powers
27theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
28instantiation30, 31  ⊢  
  :
29theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_1
30theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
31instantiation32, 33, 34  ⊢  
  : , : , :
32theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
33theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.complex_nonzero_within_complex
34assumption  ⊢  
*equality replacement requirements