logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3,  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation4, 9, 8, 7, 11, 5, 12, 20,  ⊢  
  : , : , : , : , : , :
3instantiation6, 7, 8, 9, 10, 11, 12, 20, 13*,  ⊢  
  : , : , : , : , : , :
4theorem  ⊢  
 proveit.numbers.multiplication.disassociation
5instantiation14  ⊢  
  : , :
6theorem  ⊢  
 proveit.numbers.multiplication.association
7theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
8theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
9axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
10instantiation14  ⊢  
  : , :
11theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
12assumption  ⊢  
13instantiation15, 20, 16, 17*, 18*  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
15theorem  ⊢  
 proveit.numbers.exponentiation.product_of_posnat_powers
16theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
17instantiation19, 20  ⊢  
  :
18theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_1
19theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
20instantiation21, 22, 23  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
22theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.complex_nonzero_within_complex
23assumption  ⊢  
*equality replacement requirements