logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, , , ,  ⊢  
  : , :
1theorem  ⊢  
 proveit.logic.equality.equals_reversal
2instantiation3, 37, 4, 5, 6*, , , ,  ⊢  
  : , : , :
3theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
4assumption  ⊢  
5instantiation7, 26, 8, ,  ⊢  
  : , :
6instantiation16, 9, 10,  ⊢  
  : , : , :
7theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
8instantiation11, 12, 13,  ⊢  
  : , :
9instantiation14, 23, 22, 21, 15, 24, 34, 26,  ⊢  
  : , : , : , : , : , :
10instantiation16, 17, 18,  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.numbers.addition.add_complex_closure_bin
12assumption  ⊢  
13assumption  ⊢  
14theorem  ⊢  
 proveit.numbers.multiplication.disassociation
15instantiation28  ⊢  
  : , :
16axiom  ⊢  
 proveit.logic.equality.equals_transitivity
17instantiation19, 23, 21, 24, 34, 26,  ⊢  
  : , : , : , : , : , : , :
18instantiation20, 21, 22, 23, 24, 25, 34, 26, 27*,  ⊢  
  : , : , : , : , : , :
19theorem  ⊢  
 proveit.numbers.multiplication.leftward_commutation
20theorem  ⊢  
 proveit.numbers.multiplication.association
21axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
22theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
23theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
24theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
25instantiation28  ⊢  
  : , :
26assumption  ⊢  
27instantiation29, 34, 30, 31*, 32*  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
29theorem  ⊢  
 proveit.numbers.exponentiation.product_of_posnat_powers
30theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
31instantiation33, 34  ⊢  
  :
32theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_1
33theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
34instantiation35, 36, 37  ⊢  
  : , : , :
35theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
36theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.complex_nonzero_within_complex
37assumption  ⊢  
*equality replacement requirements