logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3,  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation4, 8, 6, 9, 19, 11,  ⊢  
  : , : , : , : , : , : , :
3instantiation5, 6, 7, 8, 9, 10, 19, 11, 12*,  ⊢  
  : , : , : , : , : , :
4theorem  ⊢  
 proveit.numbers.multiplication.leftward_commutation
5theorem  ⊢  
 proveit.numbers.multiplication.association
6axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
7theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
8theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
9theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
10instantiation13  ⊢  
  : , :
11assumption  ⊢  
12instantiation14, 19, 15, 16*, 17*  ⊢  
  : , : , :
13theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
14theorem  ⊢  
 proveit.numbers.exponentiation.product_of_posnat_powers
15theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
16instantiation18, 19  ⊢  
  :
17theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_1
18theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
19instantiation20, 21, 22  ⊢  
  : , : , :
20theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
21theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.complex_nonzero_within_complex
22assumption  ⊢  
*equality replacement requirements