logo

Expression of type ExprTuple

from the theory of proveit.numbers.divisibility

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, p, x, y
from proveit.logic import And, InSet, Not
from proveit.numbers import Divides, NaturalPos, greater, one
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(p, Conditional(Not(And(Divides(p, x), Divides(p, y))), And(InSet(p, NaturalPos), greater(p, one)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(p \mapsto \left\{\lnot \left(\left(p \rvert x\right) \land \left(p \rvert y\right)\right) \textrm{ if } p \in \mathbb{N}^+ ,  p > 1\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 26
body: 3
2ExprTuple26
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operand: 9
5Operationoperator: 12
operands: 8
6Literal
7ExprTuple9
8ExprTuple10, 11
9Operationoperator: 12
operands: 13
10Operationoperator: 14
operands: 15
11Operationoperator: 16
operands: 17
12Literal
13ExprTuple18, 19
14Literal
15ExprTuple26, 20
16Literal
17ExprTuple21, 26
18Operationoperator: 23
operands: 22
19Operationoperator: 23
operands: 24
20Literal
21Literal
22ExprTuple26, 25
23Literal
24ExprTuple26, 27
25Variable
26Variable
27Variable