logo

Expression of type Lambda

from the theory of proveit.numbers.divisibility

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, p, x, y
from proveit.logic import And, InSet, Not
from proveit.numbers import Divides, NaturalPos, greater, one
In [2]:
# build up the expression from sub-expressions
expr = Lambda(p, Conditional(Not(And(Divides(p, x), Divides(p, y))), And(InSet(p, NaturalPos), greater(p, one))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
p \mapsto \left\{\lnot \left(\left(p \rvert x\right) \land \left(p \rvert y\right)\right) \textrm{ if } p \in \mathbb{N}^+ ,  p > 1\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 25
body: 2
1ExprTuple25
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operand: 8
4Operationoperator: 11
operands: 7
5Literal
6ExprTuple8
7ExprTuple9, 10
8Operationoperator: 11
operands: 12
9Operationoperator: 13
operands: 14
10Operationoperator: 15
operands: 16
11Literal
12ExprTuple17, 18
13Literal
14ExprTuple25, 19
15Literal
16ExprTuple20, 25
17Operationoperator: 22
operands: 21
18Operationoperator: 22
operands: 23
19Literal
20Literal
21ExprTuple25, 24
22Literal
23ExprTuple25, 26
24Variable
25Variable
26Variable