| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢ |
| : , : , : |
1 | reference | 30 | ⊢ |
2 | instantiation | 16, 35, 58, 4, 36, 5, 6, 18, 19, 20, 50, 11, 12, 7* | , , ⊢ |
| : , : , : , : , : , : |
3 | instantiation | 16, 64, 57, 59, 8, 9, 10, 50, 11, 12, 13* | , , ⊢ |
| : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
5 | instantiation | 14 | ⊢ |
| : , : , : |
6 | instantiation | 15 | ⊢ |
| : , : , : , : , : , : |
7 | instantiation | 16, 35, 57, 64, 36, 17, 18, 19, 20, 21* | ⊢ |
| : , : , : , : , : , : |
8 | instantiation | 46 | ⊢ |
| : , : |
9 | instantiation | 22 | ⊢ |
| : , : , : , : |
10 | instantiation | 62, 47, 23 | ⊢ |
| : , : , : |
11 | assumption | | ⊢ |
12 | assumption | | ⊢ |
13 | instantiation | 24, 25, 26* | ⊢ |
| : , : |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
15 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
16 | theorem | | ⊢ |
| proveit.numbers.addition.association |
17 | instantiation | 46 | ⊢ |
| : , : |
18 | instantiation | 62, 47, 27 | ⊢ |
| : , : , : |
19 | instantiation | 62, 47, 28 | ⊢ |
| : , : , : |
20 | instantiation | 62, 47, 29 | ⊢ |
| : , : , : |
21 | instantiation | 30, 31, 32 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
23 | instantiation | 62, 55, 33 | ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
25 | instantiation | 34, 35, 57, 64, 36, 37, 38, 50, 39* | ⊢ |
| : , : , : , : , : , : |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
27 | instantiation | 62, 55, 40 | ⊢ |
| : , : , : |
28 | instantiation | 62, 55, 41 | ⊢ |
| : , : , : |
29 | instantiation | 62, 55, 42 | ⊢ |
| : , : , : |
30 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
31 | instantiation | 43, 44 | ⊢ |
| : , : , : |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_4 |
33 | instantiation | 62, 60, 45 | ⊢ |
| : , : , : |
34 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
35 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
36 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
37 | instantiation | 46 | ⊢ |
| : , : |
38 | instantiation | 62, 47, 48 | ⊢ |
| : , : , : |
39 | instantiation | 49, 50 | ⊢ |
| : |
40 | instantiation | 62, 60, 51 | ⊢ |
| : , : , : |
41 | instantiation | 62, 60, 52 | ⊢ |
| : , : , : |
42 | instantiation | 62, 60, 53 | ⊢ |
| : , : , : |
43 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_3 |
45 | instantiation | 62, 63, 54 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
47 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
48 | instantiation | 62, 55, 56 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
50 | assumption | | ⊢ |
51 | instantiation | 62, 63, 57 | ⊢ |
| : , : , : |
52 | instantiation | 62, 63, 58 | ⊢ |
| : , : , : |
53 | instantiation | 62, 63, 59 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
56 | instantiation | 62, 60, 61 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
61 | instantiation | 62, 63, 64 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |