logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6, 7, 8, 9, 10*  ⊢  
  : , : , : , : , : , :
1theorem  ⊢  
 proveit.numbers.addition.association
2axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
3reference29  ⊢  
4theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
5theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
6instantiation11  ⊢  
  : , :
7instantiation31, 14, 12  ⊢  
  : , : , :
8instantiation31, 14, 13  ⊢  
  : , : , :
9instantiation31, 14, 15  ⊢  
  : , : , :
10instantiation16, 17, 18  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
12instantiation31, 21, 19  ⊢  
  : , : , :
13instantiation31, 21, 20  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
15instantiation31, 21, 22  ⊢  
  : , : , :
16axiom  ⊢  
 proveit.logic.equality.equals_transitivity
17instantiation23, 24  ⊢  
  : , : , :
18theorem  ⊢  
 proveit.numbers.numerals.decimals.add_5_4
19instantiation31, 27, 25  ⊢  
  : , : , :
20instantiation31, 27, 26  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
22instantiation31, 27, 28  ⊢  
  : , : , :
23axiom  ⊢  
 proveit.logic.equality.substitution
24theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_3
25instantiation31, 32, 29  ⊢  
  : , : , :
26instantiation31, 32, 30  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
28instantiation31, 32, 33  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
30theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
31theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
32theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
33theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
*equality replacement requirements