logo

Expression of type Equals

from the theory of proveit.numbers.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import b
from proveit.logic import Equals
from proveit.numbers import Add, Mult, Neg, one, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Neg(one)
expr = Equals(Mult(Add(two, three, one, sub_expr1), b), Add(Mult(two, b), Mult(three, b), b, Mult(sub_expr1, b))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(2 + 3 + 1 - 1\right) \cdot b\right) =  \\ \left(\left(2 \cdot b\right) + \left(3 \cdot b\right) + b + \left(\left(-1\right) \cdot b\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 15
operands: 5
4Operationoperator: 11
operands: 6
5ExprTuple7, 20
6ExprTuple8, 9, 20, 10
7Operationoperator: 11
operands: 12
8Operationoperator: 15
operands: 13
9Operationoperator: 15
operands: 14
10Operationoperator: 15
operands: 16
11Literal
12ExprTuple17, 18, 23, 19
13ExprTuple17, 20
14ExprTuple18, 20
15Literal
16ExprTuple19, 20
17Literal
18Literal
19Operationoperator: 21
operand: 23
20Variable
21Literal
22ExprTuple23
23Literal