logo

Expression of type ExprTuple

from the theory of proveit.numbers.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, b
from proveit.numbers import Mult, Neg, one, three, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Mult(two, b), Mult(three, b), b, Mult(Neg(one), b))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(2 \cdot b, 3 \cdot b, b, \left(-1\right) \cdot b\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 11, 3
1Operationoperator: 6
operands: 4
2Operationoperator: 6
operands: 5
3Operationoperator: 6
operands: 7
4ExprTuple8, 11
5ExprTuple9, 11
6Literal
7ExprTuple10, 11
8Literal
9Literal
10Operationoperator: 12
operand: 14
11Variable
12Literal
13ExprTuple14
14Literal