logo

Expression of type Equals

from the theory of proveit.numbers.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Variable, a, b, c, n
from proveit.core_expr_types import a_1_to_n
from proveit.logic import Equals
from proveit.numbers import Add, Neg, one, subtract, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Neg(c)
expr = Equals(Add(Add(a_1_to_n, b), subtract(sub_expr2, Add(ExprRange(sub_expr1, IndexedVar(a, sub_expr1), three, subtract(n, two))))), Add(IndexedVar(a, one), IndexedVar(a, two), IndexedVar(a, subtract(n, one)), IndexedVar(a, n), b, sub_expr2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a_{1} +  a_{2} +  \ldots +  a_{n} + b\right) + \left(-c - \left(a_{3} +  a_{4} +  \ldots +  a_{n - 2}\right)\right)\right) = \left(a_{1} + a_{2} + a_{n - 1} + a_{n} + b - c\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 36
operands: 5
4Operationoperator: 36
operands: 6
5ExprTuple7, 8
6ExprTuple9, 10, 11, 12, 18, 19
7Operationoperator: 36
operands: 13
8Operationoperator: 36
operands: 14
9IndexedVarvariable: 38
index: 31
10IndexedVarvariable: 38
index: 45
11IndexedVarvariable: 38
index: 21
12IndexedVarvariable: 38
index: 40
13ExprTuple17, 18
14ExprTuple19, 20
15ExprTuple21
16ExprTuple40
17ExprRangelambda_map: 32
start_index: 31
end_index: 40
18Variable
19Operationoperator: 43
operand: 25
20Operationoperator: 43
operand: 26
21Operationoperator: 36
operands: 24
22ExprTuple25
23ExprTuple26
24ExprTuple40, 27
25Variable
26Operationoperator: 36
operands: 28
27Operationoperator: 43
operand: 31
28ExprTuple30
29ExprTuple31
30ExprRangelambda_map: 32
start_index: 33
end_index: 34
31Literal
32Lambdaparameter: 42
body: 35
33Literal
34Operationoperator: 36
operands: 37
35IndexedVarvariable: 38
index: 42
36Literal
37ExprTuple40, 41
38Variable
39ExprTuple42
40Variable
41Operationoperator: 43
operand: 45
42Variable
43Literal
44ExprTuple45
45Literal