logo

Expression of type ExprTuple

from the theory of proveit.numbers.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, IndexedVar, a, b, c, n
from proveit.numbers import Neg, one, subtract, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(IndexedVar(a, one), IndexedVar(a, two), IndexedVar(a, subtract(n, one)), IndexedVar(a, n), b, Neg(c))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a_{1}, a_{2}, a_{n - 1}, a_{n}, b, -c\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3, 4, 5, 6
1IndexedVarvariable: 9
index: 21
2IndexedVarvariable: 9
index: 12
3IndexedVarvariable: 9
index: 13
4IndexedVarvariable: 9
index: 17
5Variable
6Operationoperator: 19
operand: 14
7ExprTuple12
8ExprTuple13
9Variable
10ExprTuple17
11ExprTuple14
12Literal
13Operationoperator: 15
operands: 16
14Variable
15Literal
16ExprTuple17, 18
17Variable
18Operationoperator: 19
operand: 21
19Literal
20ExprTuple21
21Literal