| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , ⊢  |
| | : , : , :  |
| 1 | reference | 6 | ⊢  |
| 2 | instantiation | 6, 4, 5 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 6, 7, 8 | , ⊢  |
| | : , : , :  |
| 4 | instantiation | 10, 9 | ⊢  |
| | : , : , :  |
| 5 | instantiation | 10, 39 | ⊢  |
| | : , : , :  |
| 6 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 7 | instantiation | 11, 62, 63, 12, 45, 46, 49, 28, 29, 13 | , ⊢  |
| | : , : , : , : , : , : , : , :  |
| 8 | instantiation | 14, 15, 16, 17 | , ⊢  |
| | : , : , : , :  |
| 9 | instantiation | 48, 45 | ⊢  |
| | :  |
| 10 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 11 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_general |
| 12 | instantiation | 18 | ⊢  |
| | : , : , :  |
| 13 | instantiation | 19 | ⊢  |
| | :  |
| 14 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 15 | instantiation | 20, 66, 41, 21, 26, 42, 45, 49, 28, 29 | , ⊢  |
| | : , : , : , : , : , : , :  |
| 16 | instantiation | 24, 62, 66, 22, 26, 45, 49, 28, 29, 23* | , ⊢  |
| | : , : , : , : , : , :  |
| 17 | instantiation | 24, 66, 41, 25, 26, 42, 45, 27, 28, 29, 30* | , ⊢  |
| | : , : , : , : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 19 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 20 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 21 | instantiation | 50 | ⊢  |
| | : , :  |
| 22 | instantiation | 50 | ⊢  |
| | : , :  |
| 23 | instantiation | 34, 31, 32* | ⊢  |
| | : , :  |
| 24 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 25 | instantiation | 50 | ⊢  |
| | : , :  |
| 26 | instantiation | 50 | ⊢  |
| | : , :  |
| 27 | instantiation | 33, 45, 49 | ⊢  |
| | : , :  |
| 28 | instantiation | 33, 44, 46 | ⊢  |
| | : , :  |
| 29 | instantiation | 33, 45, 46 | ⊢  |
| | : , :  |
| 30 | instantiation | 34, 35, 36* | ⊢  |
| | : , :  |
| 31 | instantiation | 40, 41, 66, 62, 42, 37, 38, 49, 39* | ⊢  |
| | : , : , : , : , : , :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 33 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 34 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 35 | instantiation | 40, 41, 66, 62, 42, 43, 44, 45, 46 | ⊢  |
| | : , : , : , : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_2 |
| 37 | instantiation | 50 | ⊢  |
| | : , :  |
| 38 | instantiation | 64, 52, 47 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 48, 49 | ⊢  |
| | :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.multiplication.distribute_through_sum |
| 41 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 42 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 43 | instantiation | 50 | ⊢  |
| | : , :  |
| 44 | instantiation | 64, 52, 51 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 64, 52, 53 | ⊢  |
| | : , : , :  |
| 46 | assumption | | ⊢  |
| 47 | instantiation | 64, 56, 54 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 49 | assumption | | ⊢  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 51 | instantiation | 64, 56, 55 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 53 | instantiation | 64, 56, 57 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 64, 60, 58 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 64, 60, 59 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 57 | instantiation | 64, 60, 61 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 64, 65, 62 | ⊢  |
| | : , : , :  |
| 59 | instantiation | 64, 65, 63 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 61 | instantiation | 64, 65, 66 | ⊢  |
| | : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 63 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 64 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |