| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 5, 51, 26, 6, 11, 27, 30, 34, 13, 14 | , ⊢ |
| : , : , : , : , : , : , : |
3 | instantiation | 9, 47, 51, 7, 11, 30, 34, 13, 14, 8* | , ⊢ |
| : , : , : , : , : , : |
4 | instantiation | 9, 51, 26, 10, 11, 27, 30, 12, 13, 14, 15* | , ⊢ |
| : , : , : , : , : , : |
5 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
6 | instantiation | 35 | ⊢ |
| : , : |
7 | instantiation | 35 | ⊢ |
| : , : |
8 | instantiation | 19, 16, 17* | ⊢ |
| : , : |
9 | theorem | | ⊢ |
| proveit.numbers.addition.association |
10 | instantiation | 35 | ⊢ |
| : , : |
11 | instantiation | 35 | ⊢ |
| : , : |
12 | instantiation | 18, 30, 34 | ⊢ |
| : , : |
13 | instantiation | 18, 29, 31 | ⊢ |
| : , : |
14 | instantiation | 18, 30, 31 | ⊢ |
| : , : |
15 | instantiation | 19, 20, 21* | ⊢ |
| : , : |
16 | instantiation | 25, 26, 51, 47, 27, 22, 23, 34, 24* | ⊢ |
| : , : , : , : , : , : |
17 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
18 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
19 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
20 | instantiation | 25, 26, 51, 47, 27, 28, 29, 30, 31 | ⊢ |
| : , : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_3_2 |
22 | instantiation | 35 | ⊢ |
| : , : |
23 | instantiation | 49, 37, 32 | ⊢ |
| : , : , : |
24 | instantiation | 33, 34 | ⊢ |
| : |
25 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
26 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
27 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
28 | instantiation | 35 | ⊢ |
| : , : |
29 | instantiation | 49, 37, 36 | ⊢ |
| : , : , : |
30 | instantiation | 49, 37, 38 | ⊢ |
| : , : , : |
31 | assumption | | ⊢ |
32 | instantiation | 49, 41, 39 | ⊢ |
| : , : , : |
33 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
34 | assumption | | ⊢ |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
36 | instantiation | 49, 41, 40 | ⊢ |
| : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
38 | instantiation | 49, 41, 42 | ⊢ |
| : , : , : |
39 | instantiation | 49, 45, 43 | ⊢ |
| : , : , : |
40 | instantiation | 49, 45, 44 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
42 | instantiation | 49, 45, 46 | ⊢ |
| : , : , : |
43 | instantiation | 49, 50, 47 | ⊢ |
| : , : , : |
44 | instantiation | 49, 50, 48 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
46 | instantiation | 49, 50, 51 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
49 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |