| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , ⊢  |
| | : , : , :  |
| 1 | reference | 31 | ⊢  |
| 2 | instantiation | 31, 4, 5 | , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 18, 75, 79, 47, 6, 7, 8, 52, 53, 56, 54, 55, 9* | , , ⊢  |
| | : , : , : , : , : , :  |
| 4 | instantiation | 31, 10, 11 | , , ⊢  |
| | : , : , :  |
| 5 | instantiation | 18, 48, 76, 12, 51, 13, 14, 60, 52, 53, 56, 54, 55, 15* | , , ⊢  |
| | : , : , : , : , : , :  |
| 6 | instantiation | 16 | ⊢  |
| | : , : , :  |
| 7 | instantiation | 62 | ⊢  |
| | : , : , : , : , :  |
| 8 | instantiation | 17, 53, 60 | ⊢  |
| | : , :  |
| 9 | instantiation | 18, 48, 76, 75, 51, 19, 52, 53, 56, 20* | ⊢  |
| | : , : , : , : , : , :  |
| 10 | instantiation | 31, 21, 22 | , , ⊢  |
| | : , : , :  |
| 11 | instantiation | 45, 23, 76, 48, 24, 36, 51, 60, 52, 53, 56, 54, 55 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 13 | instantiation | 58 | ⊢  |
| | : , :  |
| 14 | instantiation | 25 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 15 | instantiation | 26, 27, 28* | ⊢  |
| | : , :  |
| 16 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 17 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 18 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 19 | instantiation | 58 | ⊢  |
| | : , :  |
| 20 | instantiation | 31, 29, 30 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 31, 32, 33 | , , ⊢  |
| | : , : , :  |
| 22 | instantiation | 45, 34, 76, 75, 35, 36, 60, 52, 53, 56, 54, 55 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat7 |
| 24 | instantiation | 37 | ⊢  |
| | : , : , : , : , : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 26 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 27 | instantiation | 38, 48, 76, 75, 51, 39, 52, 60, 40* | ⊢  |
| | : , : , : , : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 29 | instantiation | 41, 42 | ⊢  |
| | : , : , :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_3 |
| 31 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 32 | instantiation | 45, 75, 46, 43, 44, 60, 52, 53, 54, 55, 56 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 33 | instantiation | 45, 46, 47, 48, 49, 50, 51, 60, 52, 53, 54, 55, 56 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 35 | instantiation | 57 | ⊢  |
| | : , : , : , : , : , :  |
| 36 | instantiation | 58 | ⊢  |
| | : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
| 38 | theorem | | ⊢  |
| | proveit.numbers.multiplication.distribute_through_sum |
| 39 | instantiation | 58 | ⊢  |
| | : , :  |
| 40 | instantiation | 59, 60 | ⊢  |
| | :  |
| 41 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 42 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_2 |
| 43 | instantiation | 61 | ⊢  |
| | : , : , : , :  |
| 44 | instantiation | 61 | ⊢  |
| | : , : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 48 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 49 | instantiation | 61 | ⊢  |
| | : , : , : , :  |
| 50 | instantiation | 62 | ⊢  |
| | : , : , : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 52 | instantiation | 77, 65, 63 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 77, 65, 64 | ⊢  |
| | : , : , :  |
| 54 | assumption | | ⊢  |
| 55 | assumption | | ⊢  |
| 56 | instantiation | 77, 65, 66 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 59 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 60 | assumption | | ⊢  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 63 | instantiation | 77, 69, 67 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 77, 69, 68 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 66 | instantiation | 77, 69, 70 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 77, 73, 71 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 77, 73, 72 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 70 | instantiation | 77, 73, 74 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 77, 78, 75 | ⊢  |
| | : , : , :  |
| 72 | instantiation | 77, 78, 76 | ⊢  |
| | : , : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 74 | instantiation | 77, 78, 79 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 77 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 78 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |