| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢  |
| : , : , :  |
1 | reference | 4 | ⊢  |
2 | instantiation | 4, 5, 6 | , , ⊢  |
| : , : , :  |
3 | instantiation | 12, 7, 42, 41, 8, 9, 19, 20, 21, 24, 22, 23 | , , ⊢  |
| : , : , : , : , : , : , :  |
4 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
5 | instantiation | 12, 41, 13, 10, 11, 19, 20, 21, 22, 23, 24 | , , ⊢  |
| : , : , : , : , : , : , :  |
6 | instantiation | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | , , ⊢  |
| : , : , : , : , : , : , :  |
7 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat6 |
8 | instantiation | 25 | ⊢  |
| : , : , : , : , : , :  |
9 | instantiation | 26 | ⊢  |
| : , :  |
10 | instantiation | 27 | ⊢  |
| : , : , : , :  |
11 | instantiation | 27 | ⊢  |
| : , : , : , :  |
12 | theorem | | ⊢  |
| proveit.numbers.addition.leftward_commutation |
13 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
14 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
15 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
16 | instantiation | 27 | ⊢  |
| : , : , : , :  |
17 | instantiation | 28 | ⊢  |
| : , : , : , : , :  |
18 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
19 | assumption | | ⊢  |
20 | instantiation | 43, 31, 29 | ⊢  |
| : , : , :  |
21 | instantiation | 43, 31, 30 | ⊢  |
| : , : , :  |
22 | assumption | | ⊢  |
23 | assumption | | ⊢  |
24 | instantiation | 43, 31, 32 | ⊢  |
| : , : , :  |
25 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
26 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
27 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
28 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
29 | instantiation | 43, 35, 33 | ⊢  |
| : , : , :  |
30 | instantiation | 43, 35, 34 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
32 | instantiation | 43, 35, 36 | ⊢  |
| : , : , :  |
33 | instantiation | 43, 39, 37 | ⊢  |
| : , : , :  |
34 | instantiation | 43, 39, 38 | ⊢  |
| : , : , :  |
35 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
36 | instantiation | 43, 39, 40 | ⊢  |
| : , : , :  |
37 | instantiation | 43, 44, 41 | ⊢  |
| : , : , :  |
38 | instantiation | 43, 44, 42 | ⊢  |
| : , : , :  |
39 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
40 | instantiation | 43, 44, 45 | ⊢  |
| : , : , :  |
41 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
42 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
43 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
44 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
45 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |