logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1reference10  ⊢  
2instantiation21, 4  ⊢  
  : , : , :
3instantiation10, 5, 6  ⊢  
  : , : , :
4instantiation7, 74, 25, 27  ⊢  
  : , : , : , : , : , : , :
5instantiation8, 65, 9  ⊢  
  : , : , :
6instantiation10, 11, 12  ⊢  
  : , : , :
7theorem  ⊢  
 proveit.logic.sets.enumeration.leftward_permutation
8axiom  ⊢  
 proveit.logic.sets.enumeration.enum_set_def
9instantiation13  ⊢  
  : , : , :
10axiom  ⊢  
 proveit.logic.equality.equals_transitivity
11instantiation14, 15, 16, 17  ⊢  
  : , : , : , :
12instantiation34, 18  ⊢  
  :
13theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
14theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
15instantiation21, 19  ⊢  
  : , : , :
16instantiation21, 20  ⊢  
  : , : , :
17instantiation21, 22  ⊢  
  : , : , :
18instantiation23, 24, 25, 26, 27, 28, 29, 30  ⊢  
  : , : , : , : , :
19instantiation32, 31  ⊢  
  :
20instantiation32, 33  ⊢  
  :
21axiom  ⊢  
 proveit.logic.equality.substitution
22instantiation34, 35  ⊢  
  :
23theorem  ⊢  
 proveit.logic.booleans.disjunction.or_if_any
24theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
25axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
26instantiation36  ⊢  
  : , :
27theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
28theorem  ⊢  
 proveit.logic.booleans.false_is_bool
29theorem  ⊢  
 proveit.logic.booleans.true_is_bool
30axiom  ⊢  
 proveit.logic.booleans.true_axiom
31instantiation38, 37  ⊢  
  : , :
32axiom  ⊢  
 proveit.logic.booleans.negation.negation_elim
33instantiation38, 39  ⊢  
  : , :
34axiom  ⊢  
 proveit.logic.booleans.eq_true_intro
35instantiation40  ⊢  
  :
36theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
37instantiation42, 41  ⊢  
  : , :
38theorem  ⊢  
 proveit.logic.equality.unfold_not_equals
39instantiation42, 43  ⊢  
  : , :
40axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
41instantiation45, 74, 46, 44  ⊢  
  : , :
42theorem  ⊢  
 proveit.logic.equality.not_equals_symmetry
43instantiation45, 65, 46, 47  ⊢  
  : , :
44instantiation48, 67, 49, 50, 51, 52*, 53*  ⊢  
  : , : , :
45theorem  ⊢  
 proveit.numbers.ordering.less_is_not_eq_nat
46theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
47theorem  ⊢  
 proveit.numbers.numerals.decimals.less_3_4
48theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
49theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
50instantiation72, 68, 54  ⊢  
  : , : , :
51instantiation55, 56  ⊢  
  :
52instantiation57, 58, 59  ⊢  
  : , : , :
53theorem  ⊢  
 proveit.numbers.numerals.decimals.add_3_1
54instantiation72, 70, 60  ⊢  
  : , : , :
55theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
56theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
57theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
58instantiation61, 63  ⊢  
  :
59instantiation62, 63, 64  ⊢  
  : , :
60instantiation72, 73, 65  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
62theorem  ⊢  
 proveit.numbers.addition.commutation
63instantiation72, 66, 67  ⊢  
  : , : , :
64theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
65theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
66theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
67instantiation72, 68, 69  ⊢  
  : , : , :
68theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
69instantiation72, 70, 71  ⊢  
  : , : , :
70theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
71instantiation72, 73, 74  ⊢  
  : , : , :
72theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
73theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
74theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
*equality replacement requirements