| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 37 | ⊢ |
2 | instantiation | 4, 98, 5 | ⊢ |
| : , : , : |
3 | instantiation | 37, 6, 7 | ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.nonmembership_equiv |
5 | instantiation | 34 | ⊢ |
| : , : , : |
6 | instantiation | 8, 9, 10, 11 | ⊢ |
| : , : , : , : |
7 | instantiation | 37, 12, 13 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
9 | instantiation | 44, 14 | ⊢ |
| : , : , : |
10 | instantiation | 44, 15 | ⊢ |
| : , : , : |
11 | instantiation | 44, 16 | ⊢ |
| : , : , : |
12 | instantiation | 37, 17, 18 | ⊢ |
| : , : , : |
13 | instantiation | 32, 19 | ⊢ |
| : |
14 | instantiation | 44, 35 | ⊢ |
| : , : , : |
15 | instantiation | 37, 20, 21 | ⊢ |
| : , : , : |
16 | instantiation | 44, 35 | ⊢ |
| : , : , : |
17 | instantiation | 44, 22 | ⊢ |
| : , : , : |
18 | instantiation | 44, 23 | ⊢ |
| : , : , : |
19 | instantiation | 24, 98, 25, 26 | ⊢ |
| : , : |
20 | instantiation | 37, 27, 28 | ⊢ |
| : , : , : |
21 | instantiation | 29, 30* | ⊢ |
| : , : |
22 | instantiation | 32, 31 | ⊢ |
| : |
23 | instantiation | 32, 33 | ⊢ |
| : |
24 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_all |
25 | instantiation | 34 | ⊢ |
| : , : , : |
26 | axiom | | ⊢ |
| proveit.logic.booleans.true_axiom |
27 | instantiation | 44, 35 | ⊢ |
| : , : , : |
28 | instantiation | 44, 36 | ⊢ |
| : , : , : |
29 | axiom | | ⊢ |
| proveit.logic.equality.not_equals_def |
30 | instantiation | 37, 38, 39 | ⊢ |
| : , : , : |
31 | instantiation | 72, 40 | ⊢ |
| : , : |
32 | axiom | | ⊢ |
| proveit.logic.booleans.eq_true_intro |
33 | instantiation | 72, 41 | ⊢ |
| : , : |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
35 | assumption | | ⊢ |
36 | instantiation | 69, 42, 43 | ⊢ |
| : , : , : |
37 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
38 | instantiation | 44, 45 | ⊢ |
| : , : , : |
39 | axiom | | ⊢ |
| proveit.logic.booleans.negation.not_f |
40 | instantiation | 81, 97, 82, 46 | ⊢ |
| : , : |
41 | instantiation | 81, 98, 82, 47 | ⊢ |
| : , : |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_3_1 |
43 | instantiation | 78, 79, 75 | ⊢ |
| : , : |
44 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
45 | instantiation | 48, 49 | ⊢ |
| : |
46 | instantiation | 54, 85, 55, 50, 51, 52*, 53* | ⊢ |
| : , : , : |
47 | instantiation | 54, 86, 55, 88, 56, 57*, 58* | ⊢ |
| : , : , : |
48 | axiom | | ⊢ |
| proveit.logic.booleans.negation.negation_elim |
49 | instantiation | 59, 60 | ⊢ |
| : , : |
50 | instantiation | 99, 91, 61 | ⊢ |
| : , : , : |
51 | instantiation | 65, 62 | ⊢ |
| : |
52 | instantiation | 69, 63, 64 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
54 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
56 | instantiation | 65, 66 | ⊢ |
| : |
57 | instantiation | 69, 67, 68 | ⊢ |
| : , : , : |
58 | instantiation | 69, 70, 71 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.logic.equality.unfold_not_equals |
60 | instantiation | 72, 73 | ⊢ |
| : , : |
61 | instantiation | 99, 95, 74 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
63 | instantiation | 76, 75 | ⊢ |
| : |
64 | instantiation | 78, 75, 77 | ⊢ |
| : , : |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
67 | instantiation | 76, 79 | ⊢ |
| : |
68 | instantiation | 78, 79, 77 | ⊢ |
| : , : |
69 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_3_2 |
71 | instantiation | 78, 79, 80 | ⊢ |
| : , : |
72 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
73 | instantiation | 81, 84, 82, 83 | ⊢ |
| : , : |
74 | instantiation | 99, 100, 84 | ⊢ |
| : , : , : |
75 | instantiation | 99, 87, 85 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
78 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
79 | instantiation | 99, 87, 86 | ⊢ |
| : , : , : |
80 | instantiation | 99, 87, 88 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.ordering.less_is_not_eq_nat |
82 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_4_5 |
84 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
85 | instantiation | 99, 91, 89 | ⊢ |
| : , : , : |
86 | instantiation | 99, 91, 90 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
88 | instantiation | 99, 91, 92 | ⊢ |
| : , : , : |
89 | instantiation | 99, 95, 93 | ⊢ |
| : , : , : |
90 | instantiation | 99, 95, 94 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
92 | instantiation | 99, 95, 96 | ⊢ |
| : , : , : |
93 | instantiation | 99, 100, 97 | ⊢ |
| : , : , : |
94 | instantiation | 99, 100, 98 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
96 | instantiation | 99, 100, 101 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
99 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |