| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 37 | ⊢  |
| 2 | instantiation | 4, 98, 5 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 37, 6, 7 | ⊢  |
| | : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.nonmembership_equiv |
| 5 | instantiation | 34 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 8, 9, 10, 11 | ⊢  |
| | : , : , : , :  |
| 7 | instantiation | 37, 12, 13 | ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 9 | instantiation | 44, 14 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 44, 15 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 44, 16 | ⊢  |
| | : , : , :  |
| 12 | instantiation | 37, 17, 18 | ⊢  |
| | : , : , :  |
| 13 | instantiation | 32, 19 | ⊢  |
| | :  |
| 14 | instantiation | 44, 35 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 37, 20, 21 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 44, 35 | ⊢  |
| | : , : , :  |
| 17 | instantiation | 44, 22 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 44, 23 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 24, 98, 25, 26 | ⊢  |
| | : , :  |
| 20 | instantiation | 37, 27, 28 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 29, 30* | ⊢  |
| | : , :  |
| 22 | instantiation | 32, 31 | ⊢  |
| | :  |
| 23 | instantiation | 32, 33 | ⊢  |
| | :  |
| 24 | theorem | | ⊢  |
| | proveit.logic.booleans.conjunction.and_if_all |
| 25 | instantiation | 34 | ⊢  |
| | : , : , :  |
| 26 | axiom | | ⊢  |
| | proveit.logic.booleans.true_axiom |
| 27 | instantiation | 44, 35 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 44, 36 | ⊢  |
| | : , : , :  |
| 29 | axiom | | ⊢  |
| | proveit.logic.equality.not_equals_def |
| 30 | instantiation | 37, 38, 39 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 72, 40 | ⊢  |
| | : , :  |
| 32 | axiom | | ⊢  |
| | proveit.logic.booleans.eq_true_intro |
| 33 | instantiation | 72, 41 | ⊢  |
| | : , :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 35 | assumption | | ⊢  |
| 36 | instantiation | 69, 42, 43 | ⊢  |
| | : , : , :  |
| 37 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 38 | instantiation | 44, 45 | ⊢  |
| | : , : , :  |
| 39 | axiom | | ⊢  |
| | proveit.logic.booleans.negation.not_f |
| 40 | instantiation | 81, 97, 82, 46 | ⊢  |
| | : , :  |
| 41 | instantiation | 81, 98, 82, 47 | ⊢  |
| | : , :  |
| 42 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_1 |
| 43 | instantiation | 78, 79, 75 | ⊢  |
| | : , :  |
| 44 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 45 | instantiation | 48, 49 | ⊢  |
| | :  |
| 46 | instantiation | 54, 85, 55, 50, 51, 52*, 53* | ⊢  |
| | : , : , :  |
| 47 | instantiation | 54, 86, 55, 88, 56, 57*, 58* | ⊢  |
| | : , : , :  |
| 48 | axiom | | ⊢  |
| | proveit.logic.booleans.negation.negation_elim |
| 49 | instantiation | 59, 60 | ⊢  |
| | : , :  |
| 50 | instantiation | 99, 91, 61 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 65, 62 | ⊢  |
| | :  |
| 52 | instantiation | 69, 63, 64 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 54 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 55 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 56 | instantiation | 65, 66 | ⊢  |
| | :  |
| 57 | instantiation | 69, 67, 68 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 69, 70, 71 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.logic.equality.unfold_not_equals |
| 60 | instantiation | 72, 73 | ⊢  |
| | : , :  |
| 61 | instantiation | 99, 95, 74 | ⊢  |
| | : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 63 | instantiation | 76, 75 | ⊢  |
| | :  |
| 64 | instantiation | 78, 75, 77 | ⊢  |
| | : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 67 | instantiation | 76, 79 | ⊢  |
| | :  |
| 68 | instantiation | 78, 79, 77 | ⊢  |
| | : , :  |
| 69 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 70 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_2 |
| 71 | instantiation | 78, 79, 80 | ⊢  |
| | : , :  |
| 72 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 73 | instantiation | 81, 84, 82, 83 | ⊢  |
| | : , :  |
| 74 | instantiation | 99, 100, 84 | ⊢  |
| | : , : , :  |
| 75 | instantiation | 99, 87, 85 | ⊢  |
| | : , : , :  |
| 76 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 78 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 79 | instantiation | 99, 87, 86 | ⊢  |
| | : , : , :  |
| 80 | instantiation | 99, 87, 88 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 82 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_4_5 |
| 84 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 85 | instantiation | 99, 91, 89 | ⊢  |
| | : , : , :  |
| 86 | instantiation | 99, 91, 90 | ⊢  |
| | : , : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 88 | instantiation | 99, 91, 92 | ⊢  |
| | : , : , :  |
| 89 | instantiation | 99, 95, 93 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 99, 95, 94 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 92 | instantiation | 99, 95, 96 | ⊢  |
| | : , : , :  |
| 93 | instantiation | 99, 100, 97 | ⊢  |
| | : , : , :  |
| 94 | instantiation | 99, 100, 98 | ⊢  |
| | : , : , :  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 96 | instantiation | 99, 100, 101 | ⊢  |
| | : , : , :  |
| 97 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 99 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 100 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 101 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |