| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 33 | ⊢  |
| 2 | instantiation | 4, 5, 6, 7 | ⊢  |
| | : , : , : , :  |
| 3 | instantiation | 33, 8, 9 | ⊢  |
| | : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 5 | instantiation | 40, 10 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 40, 11 | ⊢  |
| | : , : , :  |
| 7 | instantiation | 40, 12 | ⊢  |
| | : , : , :  |
| 8 | instantiation | 33, 13, 14 | ⊢  |
| | : , : , :  |
| 9 | instantiation | 28, 15 | ⊢  |
| | :  |
| 10 | instantiation | 40, 31 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 33, 16, 17 | ⊢  |
| | : , : , :  |
| 12 | instantiation | 40, 31 | ⊢  |
| | : , : , :  |
| 13 | instantiation | 40, 18 | ⊢  |
| | : , : , :  |
| 14 | instantiation | 40, 19 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 20, 94, 21, 22 | ⊢  |
| | : , :  |
| 16 | instantiation | 33, 23, 24 | ⊢  |
| | : , : , :  |
| 17 | instantiation | 25, 26* | ⊢  |
| | : , :  |
| 18 | instantiation | 28, 27 | ⊢  |
| | :  |
| 19 | instantiation | 28, 29 | ⊢  |
| | :  |
| 20 | theorem | | ⊢  |
| | proveit.logic.booleans.conjunction.and_if_all |
| 21 | instantiation | 30 | ⊢  |
| | : , : , :  |
| 22 | axiom | | ⊢  |
| | proveit.logic.booleans.true_axiom |
| 23 | instantiation | 40, 31 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 40, 32 | ⊢  |
| | : , : , :  |
| 25 | axiom | | ⊢  |
| | proveit.logic.equality.not_equals_def |
| 26 | instantiation | 33, 34, 35 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 68, 36 | ⊢  |
| | : , :  |
| 28 | axiom | | ⊢  |
| | proveit.logic.booleans.eq_true_intro |
| 29 | instantiation | 68, 37 | ⊢  |
| | : , :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 31 | assumption | | ⊢  |
| 32 | instantiation | 65, 38, 39 | ⊢  |
| | : , : , :  |
| 33 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 34 | instantiation | 40, 41 | ⊢  |
| | : , : , :  |
| 35 | axiom | | ⊢  |
| | proveit.logic.booleans.negation.not_f |
| 36 | instantiation | 77, 93, 78, 42 | ⊢  |
| | : , :  |
| 37 | instantiation | 77, 94, 78, 43 | ⊢  |
| | : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_1 |
| 39 | instantiation | 74, 75, 71 | ⊢  |
| | : , :  |
| 40 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 41 | instantiation | 44, 45 | ⊢  |
| | :  |
| 42 | instantiation | 50, 81, 51, 46, 47, 48*, 49* | ⊢  |
| | : , : , :  |
| 43 | instantiation | 50, 82, 51, 84, 52, 53*, 54* | ⊢  |
| | : , : , :  |
| 44 | axiom | | ⊢  |
| | proveit.logic.booleans.negation.negation_elim |
| 45 | instantiation | 55, 56 | ⊢  |
| | : , :  |
| 46 | instantiation | 95, 87, 57 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 61, 58 | ⊢  |
| | :  |
| 48 | instantiation | 65, 59, 60 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 50 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 51 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 52 | instantiation | 61, 62 | ⊢  |
| | :  |
| 53 | instantiation | 65, 63, 64 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 65, 66, 67 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.logic.equality.unfold_not_equals |
| 56 | instantiation | 68, 69 | ⊢  |
| | : , :  |
| 57 | instantiation | 95, 91, 70 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 59 | instantiation | 72, 71 | ⊢  |
| | :  |
| 60 | instantiation | 74, 71, 73 | ⊢  |
| | : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 63 | instantiation | 72, 75 | ⊢  |
| | :  |
| 64 | instantiation | 74, 75, 73 | ⊢  |
| | : , :  |
| 65 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_2 |
| 67 | instantiation | 74, 75, 76 | ⊢  |
| | : , :  |
| 68 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 69 | instantiation | 77, 80, 78, 79 | ⊢  |
| | : , :  |
| 70 | instantiation | 95, 96, 80 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 95, 83, 81 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 73 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 74 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 75 | instantiation | 95, 83, 82 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 95, 83, 84 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 78 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_4_5 |
| 80 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 81 | instantiation | 95, 87, 85 | ⊢  |
| | : , : , :  |
| 82 | instantiation | 95, 87, 86 | ⊢  |
| | : , : , :  |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 84 | instantiation | 95, 87, 88 | ⊢  |
| | : , : , :  |
| 85 | instantiation | 95, 91, 89 | ⊢  |
| | : , : , :  |
| 86 | instantiation | 95, 91, 90 | ⊢  |
| | : , : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 88 | instantiation | 95, 91, 92 | ⊢  |
| | : , : , :  |
| 89 | instantiation | 95, 96, 93 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 95, 96, 94 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 92 | instantiation | 95, 96, 97 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 94 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 95 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 96 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 97 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |