| | step type | requirements | statement |
| 0 | instantiation | 1, 2 | ⊢  |
| | : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 2 | instantiation | 3, 4 | ⊢  |
| | : , :  |
| 3 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 4 | instantiation | 5, 6, 7 | ⊢  |
| | : , : , :  |
| 5 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 6 | instantiation | 8, 77, 73, 14, 9 | ⊢  |
| | : , : , : , : , :  |
| 7 | instantiation | 10, 77, 73, 11, 14, 12 | ⊢  |
| | : , : , : , : , : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.proper_subset_of_superset |
| 9 | instantiation | 13, 77, 14, 15, 16, 17 | ⊢  |
| | : , : , :  |
| 10 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.leftward_permutation |
| 11 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 12 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 13 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.nonmembership_fold |
| 14 | instantiation | 18 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 21, 19 | ⊢  |
| | : , :  |
| 16 | instantiation | 21, 20 | ⊢  |
| | : , :  |
| 17 | instantiation | 21, 22 | ⊢  |
| | : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 19 | instantiation | 25, 73, 26, 23 | ⊢  |
| | : , :  |
| 20 | instantiation | 25, 74, 26, 24 | ⊢  |
| | : , :  |
| 21 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 22 | instantiation | 25, 77, 26, 27 | ⊢  |
| | : , :  |
| 23 | instantiation | 35, 61, 36, 28, 29, 30*, 31* | ⊢  |
| | : , : , :  |
| 24 | instantiation | 35, 62, 36, 64, 32, 33*, 34* | ⊢  |
| | : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 27 | instantiation | 35, 64, 36, 62, 37, 38*, 46* | ⊢  |
| | : , : , :  |
| 28 | instantiation | 75, 67, 39 | ⊢  |
| | : , : , :  |
| 29 | instantiation | 48, 40 | ⊢  |
| | :  |
| 30 | instantiation | 50, 41, 42 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 32 | instantiation | 48, 43 | ⊢  |
| | :  |
| 33 | instantiation | 50, 44, 45 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 50, 46, 47 | ⊢  |
| | : , : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 36 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 37 | instantiation | 48, 49 | ⊢  |
| | :  |
| 38 | instantiation | 50, 51, 52 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 75, 71, 53 | ⊢  |
| | : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 41 | instantiation | 56, 54 | ⊢  |
| | :  |
| 42 | instantiation | 57, 54, 59 | ⊢  |
| | : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 44 | instantiation | 56, 55 | ⊢  |
| | :  |
| 45 | instantiation | 57, 55, 59 | ⊢  |
| | : , :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_3 |
| 47 | instantiation | 57, 55, 58 | ⊢  |
| | : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 49 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 50 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 51 | instantiation | 56, 58 | ⊢  |
| | :  |
| 52 | instantiation | 57, 58, 59 | ⊢  |
| | : , :  |
| 53 | instantiation | 75, 76, 60 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 75, 63, 61 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 75, 63, 62 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 57 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 58 | instantiation | 75, 63, 64 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 61 | instantiation | 75, 67, 65 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 75, 67, 66 | ⊢  |
| | : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 64 | instantiation | 75, 67, 68 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 75, 71, 69 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 75, 71, 70 | ⊢  |
| | : , : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 68 | instantiation | 75, 71, 72 | ⊢  |
| | : , : , :  |
| 69 | instantiation | 75, 76, 73 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 75, 76, 74 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 72 | instantiation | 75, 76, 77 | ⊢  |
| | : , : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 74 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 75 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 76 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |