| step type | requirements | statement |
0 | instantiation | 1, 2 | ⊢  |
| : , :  |
1 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.unfold_subset_eq |
2 | instantiation | 3, 4 | ⊢  |
| : , :  |
3 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.relax_proper_subset |
4 | instantiation | 5, 6, 7 | ⊢  |
| : , : , :  |
5 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
6 | instantiation | 8, 77, 73, 14, 9 | ⊢  |
| : , : , : , : , :  |
7 | instantiation | 10, 77, 73, 11, 14, 12 | ⊢  |
| : , : , : , : , : , : , :  |
8 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
9 | instantiation | 13, 77, 14, 15, 16, 17 | ⊢  |
| : , : , :  |
10 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.leftward_permutation |
11 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
12 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
13 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.nonmembership_fold |
14 | instantiation | 18 | ⊢  |
| : , : , :  |
15 | instantiation | 21, 19 | ⊢  |
| : , :  |
16 | instantiation | 21, 20 | ⊢  |
| : , :  |
17 | instantiation | 21, 22 | ⊢  |
| : , :  |
18 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
19 | instantiation | 25, 73, 26, 23 | ⊢  |
| : , :  |
20 | instantiation | 25, 74, 26, 24 | ⊢  |
| : , :  |
21 | theorem | | ⊢  |
| proveit.logic.equality.not_equals_symmetry |
22 | instantiation | 25, 77, 26, 27 | ⊢  |
| : , :  |
23 | instantiation | 35, 61, 36, 28, 29, 30*, 31* | ⊢  |
| : , : , :  |
24 | instantiation | 35, 62, 36, 64, 32, 33*, 34* | ⊢  |
| : , : , :  |
25 | theorem | | ⊢  |
| proveit.numbers.ordering.less_is_not_eq_nat |
26 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
27 | instantiation | 35, 64, 36, 62, 37, 38*, 46* | ⊢  |
| : , : , :  |
28 | instantiation | 75, 67, 39 | ⊢  |
| : , : , :  |
29 | instantiation | 48, 40 | ⊢  |
| :  |
30 | instantiation | 50, 41, 42 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_4_1 |
32 | instantiation | 48, 43 | ⊢  |
| :  |
33 | instantiation | 50, 44, 45 | ⊢  |
| : , : , :  |
34 | instantiation | 50, 46, 47 | ⊢  |
| : , : , :  |
35 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
36 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
37 | instantiation | 48, 49 | ⊢  |
| :  |
38 | instantiation | 50, 51, 52 | ⊢  |
| : , : , :  |
39 | instantiation | 75, 71, 53 | ⊢  |
| : , : , :  |
40 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat4 |
41 | instantiation | 56, 54 | ⊢  |
| :  |
42 | instantiation | 57, 54, 59 | ⊢  |
| : , :  |
43 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
44 | instantiation | 56, 55 | ⊢  |
| :  |
45 | instantiation | 57, 55, 59 | ⊢  |
| : , :  |
46 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_2_3 |
47 | instantiation | 57, 55, 58 | ⊢  |
| : , :  |
48 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
49 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
50 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
51 | instantiation | 56, 58 | ⊢  |
| :  |
52 | instantiation | 57, 58, 59 | ⊢  |
| : , :  |
53 | instantiation | 75, 76, 60 | ⊢  |
| : , : , :  |
54 | instantiation | 75, 63, 61 | ⊢  |
| : , : , :  |
55 | instantiation | 75, 63, 62 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
57 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
58 | instantiation | 75, 63, 64 | ⊢  |
| : , : , :  |
59 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
60 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
61 | instantiation | 75, 67, 65 | ⊢  |
| : , : , :  |
62 | instantiation | 75, 67, 66 | ⊢  |
| : , : , :  |
63 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
64 | instantiation | 75, 67, 68 | ⊢  |
| : , : , :  |
65 | instantiation | 75, 71, 69 | ⊢  |
| : , : , :  |
66 | instantiation | 75, 71, 70 | ⊢  |
| : , : , :  |
67 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
68 | instantiation | 75, 71, 72 | ⊢  |
| : , : , :  |
69 | instantiation | 75, 76, 73 | ⊢  |
| : , : , :  |
70 | instantiation | 75, 76, 74 | ⊢  |
| : , : , :  |
71 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
72 | instantiation | 75, 76, 77 | ⊢  |
| : , : , :  |
73 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
74 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
75 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
76 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
77 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |