| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢  |
| : , : , :  |
1 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.transitivity_subset_subset |
2 | instantiation | 6, 4, 5 | ⊢  |
| : , : , :  |
3 | instantiation | 6, 7, 8 | ⊢  |
| : , : , :  |
4 | instantiation | 13, 123, 20, 21, 9 | ⊢  |
| : , : , : , : , :  |
5 | instantiation | 10, 11, 12 | ⊢  |
| : , : , :  |
6 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
7 | instantiation | 13, 120, 117, 24, 14 | ⊢  |
| : , : , : , : , :  |
8 | instantiation | 18, 120, 117, 19, 24, 22 | ⊢  |
| : , : , : , : , : , : , :  |
9 | instantiation | 23, 123, 20, 15, 16 | ⊢  |
| : , : , :  |
10 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
11 | instantiation | 18, 117, 123, 17 | ⊢  |
| : , : , : , : , : , : , :  |
12 | instantiation | 18, 123, 19, 20, 21, 22 | ⊢  |
| : , : , : , : , : , : , :  |
13 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
14 | instantiation | 23, 120, 24, 25, 26, 27, 28, 29 | ⊢  |
| : , : , :  |
15 | instantiation | 38, 30 | ⊢  |
| : , :  |
16 | instantiation | 38, 31 | ⊢  |
| : , :  |
17 | instantiation | 32 | ⊢  |
| : , :  |
18 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.leftward_permutation |
19 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
20 | instantiation | 32 | ⊢  |
| : , :  |
21 | instantiation | 32 | ⊢  |
| : , :  |
22 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
23 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.nonmembership_fold |
24 | instantiation | 33 | ⊢  |
| : , : , : , : , :  |
25 | instantiation | 38, 34 | ⊢  |
| : , :  |
26 | instantiation | 38, 35 | ⊢  |
| : , :  |
27 | instantiation | 38, 36 | ⊢  |
| : , :  |
28 | instantiation | 38, 37 | ⊢  |
| : , :  |
29 | instantiation | 38, 39 | ⊢  |
| : , :  |
30 | instantiation | 46, 117, 120, 40 | ⊢  |
| : , :  |
31 | instantiation | 46, 119, 120, 41 | ⊢  |
| : , :  |
32 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
33 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
34 | instantiation | 46, 117, 47, 42 | ⊢  |
| : , :  |
35 | instantiation | 46, 123, 47, 43 | ⊢  |
| : , :  |
36 | instantiation | 46, 119, 47, 44 | ⊢  |
| : , :  |
37 | instantiation | 46, 118, 47, 45 | ⊢  |
| : , :  |
38 | theorem | | ⊢  |
| proveit.logic.equality.not_equals_symmetry |
39 | instantiation | 46, 120, 47, 48 | ⊢  |
| : , :  |
40 | instantiation | 62, 99, 63, 100, 57, 53*, 49* | ⊢  |
| : , : , :  |
41 | instantiation | 62, 101, 63, 104, 64, 58*, 50* | ⊢  |
| : , : , :  |
42 | instantiation | 62, 99, 63, 51, 52, 53*, 54* | ⊢  |
| : , : , :  |
43 | instantiation | 62, 104, 63, 102, 55, 56*, 87* | ⊢  |
| : , : , :  |
44 | instantiation | 62, 101, 63, 100, 57, 58*, 80* | ⊢  |
| : , : , :  |
45 | instantiation | 62, 100, 63, 101, 59, 60*, 61* | ⊢  |
| : , : , :  |
46 | theorem | | ⊢  |
| proveit.numbers.ordering.less_is_not_eq_nat |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat7 |
48 | instantiation | 62, 102, 63, 104, 64, 65*, 66* | ⊢  |
| : , : , :  |
49 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_4_1 |
50 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_2_3 |
51 | instantiation | 121, 109, 67 | ⊢  |
| : , : , :  |
52 | instantiation | 82, 68 | ⊢  |
| :  |
53 | instantiation | 86, 69, 70 | ⊢  |
| : , : , :  |
54 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_6_1 |
55 | instantiation | 82, 71 | ⊢  |
| :  |
56 | instantiation | 86, 72, 73 | ⊢  |
| : , : , :  |
57 | instantiation | 82, 74 | ⊢  |
| :  |
58 | instantiation | 86, 75, 76 | ⊢  |
| : , : , :  |
59 | instantiation | 82, 77 | ⊢  |
| :  |
60 | instantiation | 86, 78, 79 | ⊢  |
| : , : , :  |
61 | instantiation | 86, 80, 81 | ⊢  |
| : , : , :  |
62 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
63 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
64 | instantiation | 82, 83 | ⊢  |
| :  |
65 | instantiation | 86, 84, 85 | ⊢  |
| : , : , :  |
66 | instantiation | 86, 87, 88 | ⊢  |
| : , : , :  |
67 | instantiation | 121, 115, 89 | ⊢  |
| : , : , :  |
68 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat6 |
69 | instantiation | 93, 90 | ⊢  |
| :  |
70 | instantiation | 95, 90, 94 | ⊢  |
| : , :  |
71 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat5 |
72 | instantiation | 93, 97 | ⊢  |
| :  |
73 | instantiation | 95, 97, 94 | ⊢  |
| : , :  |
74 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat4 |
75 | instantiation | 93, 92 | ⊢  |
| :  |
76 | instantiation | 95, 92, 94 | ⊢  |
| : , :  |
77 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
78 | instantiation | 93, 91 | ⊢  |
| :  |
79 | instantiation | 95, 91, 94 | ⊢  |
| : , :  |
80 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_4_3 |
81 | instantiation | 95, 91, 92 | ⊢  |
| : , :  |
82 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
83 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
84 | instantiation | 93, 96 | ⊢  |
| :  |
85 | instantiation | 95, 96, 94 | ⊢  |
| : , :  |
86 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
87 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_5_2 |
88 | instantiation | 95, 96, 97 | ⊢  |
| : , :  |
89 | instantiation | 121, 122, 98 | ⊢  |
| : , : , :  |
90 | instantiation | 121, 103, 99 | ⊢  |
| : , : , :  |
91 | instantiation | 121, 103, 100 | ⊢  |
| : , : , :  |
92 | instantiation | 121, 103, 101 | ⊢  |
| : , : , :  |
93 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
94 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
95 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
96 | instantiation | 121, 103, 102 | ⊢  |
| : , : , :  |
97 | instantiation | 121, 103, 104 | ⊢  |
| : , : , :  |
98 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat6 |
99 | instantiation | 121, 109, 105 | ⊢  |
| : , : , :  |
100 | instantiation | 121, 109, 106 | ⊢  |
| : , : , :  |
101 | instantiation | 121, 109, 107 | ⊢  |
| : , : , :  |
102 | instantiation | 121, 109, 108 | ⊢  |
| : , : , :  |
103 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
104 | instantiation | 121, 109, 110 | ⊢  |
| : , : , :  |
105 | instantiation | 121, 115, 111 | ⊢  |
| : , : , :  |
106 | instantiation | 121, 115, 112 | ⊢  |
| : , : , :  |
107 | instantiation | 121, 115, 113 | ⊢  |
| : , : , :  |
108 | instantiation | 121, 115, 114 | ⊢  |
| : , : , :  |
109 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
110 | instantiation | 121, 115, 116 | ⊢  |
| : , : , :  |
111 | instantiation | 121, 122, 117 | ⊢  |
| : , : , :  |
112 | instantiation | 121, 122, 118 | ⊢  |
| : , : , :  |
113 | instantiation | 121, 122, 119 | ⊢  |
| : , : , :  |
114 | instantiation | 121, 122, 120 | ⊢  |
| : , : , :  |
115 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
116 | instantiation | 121, 122, 123 | ⊢  |
| : , : , :  |
117 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
118 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
119 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
120 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
121 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
122 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
123 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |