| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.refined_nonmembership |
2 | instantiation | 4, 5 | ⊢ |
| : , : |
3 | instantiation | 32, 70, 6, 7, 8, 9, 10, 11 | ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
5 | instantiation | 12, 13, 14 | ⊢ |
| : , : , : |
6 | instantiation | 15 | ⊢ |
| : , : , : , : , : |
7 | instantiation | 46, 16 | ⊢ |
| : , : |
8 | instantiation | 46, 17 | ⊢ |
| : , : |
9 | instantiation | 46, 18 | ⊢ |
| : , : |
10 | instantiation | 46, 19 | ⊢ |
| : , : |
11 | instantiation | 46, 20 | ⊢ |
| : , : |
12 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
13 | instantiation | 21, 110, 106, 33, 22 | ⊢ |
| : , : , : , : , : |
14 | instantiation | 23, 110, 106, 24, 33, 25 | ⊢ |
| : , : , : , : , : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
16 | instantiation | 56, 106, 30, 26 | ⊢ |
| : , : |
17 | instantiation | 56, 107, 30, 27 | ⊢ |
| : , : |
18 | instantiation | 56, 110, 30, 28 | ⊢ |
| : , : |
19 | instantiation | 56, 97, 30, 29 | ⊢ |
| : , : |
20 | instantiation | 56, 70, 30, 31 | ⊢ |
| : , : |
21 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
22 | instantiation | 32, 110, 33, 34, 35, 36 | ⊢ |
| : , : , : |
23 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.leftward_permutation |
24 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
25 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
26 | instantiation | 66, 93, 67, 37, 38, 61*, 39* | ⊢ |
| : , : , : |
27 | instantiation | 66, 94, 67, 71, 60, 64*, 40* | ⊢ |
| : , : , : |
28 | instantiation | 66, 96, 67, 63, 69*, 41* | ⊢ |
| : , : , : |
29 | instantiation | 66, 71, 67, 94, 68, 42*, 50* | ⊢ |
| : , : , : |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_5_6 |
32 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.nonmembership_fold |
33 | instantiation | 43 | ⊢ |
| : , : , : |
34 | instantiation | 46, 44 | ⊢ |
| : , : |
35 | instantiation | 46, 45 | ⊢ |
| : , : |
36 | instantiation | 46, 47 | ⊢ |
| : , : |
37 | instantiation | 108, 100, 48 | ⊢ |
| : , : , : |
38 | instantiation | 80, 49 | ⊢ |
| : |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_1 |
40 | instantiation | 82, 50, 51 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_3_3 |
42 | instantiation | 82, 52, 53 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
44 | instantiation | 56, 106, 70, 54 | ⊢ |
| : , : |
45 | instantiation | 56, 107, 70, 55 | ⊢ |
| : , : |
46 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
47 | instantiation | 56, 110, 70, 57 | ⊢ |
| : , : |
48 | instantiation | 108, 104, 58 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_4 |
51 | instantiation | 89, 87, 59 | ⊢ |
| : , : |
52 | instantiation | 88, 59 | ⊢ |
| : |
53 | instantiation | 89, 59, 91 | ⊢ |
| : , : |
54 | instantiation | 66, 93, 67, 71, 60, 61*, 62* | ⊢ |
| : , : , : |
55 | instantiation | 66, 94, 67, 96, 63, 64*, 65* | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.ordering.less_is_not_eq_nat |
57 | instantiation | 66, 96, 67, 94, 68, 69*, 78* | ⊢ |
| : , : , : |
58 | instantiation | 108, 109, 70 | ⊢ |
| : , : , : |
59 | instantiation | 108, 95, 71 | ⊢ |
| : , : , : |
60 | instantiation | 80, 72 | ⊢ |
| : |
61 | instantiation | 82, 73, 74 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
63 | instantiation | 80, 75 | ⊢ |
| : |
64 | instantiation | 82, 76, 77 | ⊢ |
| : , : , : |
65 | instantiation | 82, 78, 79 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
68 | instantiation | 80, 81 | ⊢ |
| : |
69 | instantiation | 82, 83, 84 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
71 | instantiation | 108, 100, 85 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
73 | instantiation | 88, 86 | ⊢ |
| : |
74 | instantiation | 89, 86, 91 | ⊢ |
| : , : |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
76 | instantiation | 88, 87 | ⊢ |
| : |
77 | instantiation | 89, 87, 91 | ⊢ |
| : , : |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_3 |
79 | instantiation | 89, 87, 90 | ⊢ |
| : , : |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
81 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
82 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
83 | instantiation | 88, 90 | ⊢ |
| : |
84 | instantiation | 89, 90, 91 | ⊢ |
| : , : |
85 | instantiation | 108, 104, 92 | ⊢ |
| : , : , : |
86 | instantiation | 108, 95, 93 | ⊢ |
| : , : , : |
87 | instantiation | 108, 95, 94 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
89 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
90 | instantiation | 108, 95, 96 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
92 | instantiation | 108, 109, 97 | ⊢ |
| : , : , : |
93 | instantiation | 108, 100, 98 | ⊢ |
| : , : , : |
94 | instantiation | 108, 100, 99 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
96 | instantiation | 108, 100, 101 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
98 | instantiation | 108, 104, 102 | ⊢ |
| : , : , : |
99 | instantiation | 108, 104, 103 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
101 | instantiation | 108, 104, 105 | ⊢ |
| : , : , : |
102 | instantiation | 108, 109, 106 | ⊢ |
| : , : , : |
103 | instantiation | 108, 109, 107 | ⊢ |
| : , : , : |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
105 | instantiation | 108, 109, 110 | ⊢ |
| : , : , : |
106 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
107 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
108 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
109 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
110 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |