logo

Expression of type Lambda

from the theory of proveit.logic.sets.functions

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Lambda, f, fx, x
from proveit.logic import Equals, Forall, Functions, InSet
In [2]:
# build up the expression from sub-expressions
expr = Lambda([f, A, B], Equals(InSet(f, Functions(A, B)), Forall(instance_param_or_params = [x], instance_expr = InSet(fx, B), domain = A)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(f, A, B\right) \mapsto \left(\left(f \in \left[A \rightarrow B\right]\right) = \left[\forall_{x \in A}~\left(f\left(x\right) \in B\right)\right]\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple23, 22, 21
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 18
operands: 7
6Operationoperator: 8
operand: 11
7ExprTuple23, 10
8Literal
9ExprTuple11
10Operationoperator: 12
operands: 13
11Lambdaparameter: 25
body: 14
12Literal
13ExprTuple22, 21
14Conditionalvalue: 15
condition: 16
15Operationoperator: 18
operands: 17
16Operationoperator: 18
operands: 19
17ExprTuple20, 21
18Literal
19ExprTuple25, 22
20Operationoperator: 23
operand: 25
21Variable
22Variable
23Variable
24ExprTuple25
25Variable