Theory of
proveit
.
logic
.
sets
.functions
¶
Provide description here.
In [1]:
import
proveit
%
theory
# toggles between interactive and static modes
Local content of this theory
common expressions
axioms
theorems
demonstrations
Sub-theories
images
An image is a set obtained from applying a function to the elements of another set.
injections
An injection is a 1-to-1 function. Distinct elements map distinctly.
surjections
A surjection is an onto function. Its image covers the codomain.
bijections
A bijection is a 1-to-1 and onto function.
All axioms contained within this theory
proveit.logic.sets.functions.functions_def
proveit.logic.sets.functions.images
proveit.logic.sets.functions.images.set_image_def
proveit.logic.sets.functions.injections
proveit.logic.sets.functions.injections.injective_def
proveit.logic.sets.functions.surjections
proveit.logic.sets.functions.surjections.surjective_def
proveit.logic.sets.functions.bijections
proveit.logic.sets.functions.bijections.bijective_def