logo

Expression of type ExprTuple

from the theory of proveit.logic.sets.enumeration

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Lambda, x
from proveit.core_expr_types import y_1_to_n
from proveit.logic import Boolean, InSet, Set
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([x, y_1_to_n], InSet(InSet(x, Set(y_1_to_n)), Boolean)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \mapsto \left(\left(x \in \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right) \in \mathbb{B}\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 2
body: 3
2ExprTuple9, 13
3Operationoperator: 7
operands: 4
4ExprTuple5, 6
5Operationoperator: 7
operands: 8
6Literal
7Literal
8ExprTuple9, 10
9Variable
10Operationoperator: 11
operands: 12
11Literal
12ExprTuple13
13ExprRangelambda_map: 14
start_index: 15
end_index: 16
14Lambdaparameter: 20
body: 17
15Literal
16Variable
17IndexedVarvariable: 18
index: 20
18Variable
19ExprTuple20
20Variable